Linknot: Knot Theory By Computer

Linknot: Knot Theory By Computer
Author: Slavik Vlado Jablan
Publisher: World Scientific
Total Pages: 497
Release: 2007-11-16
Genre: Mathematics
ISBN: 9814474037

LinKnot — Knot Theory by Computer provides a unique view of selected topics in knot theory suitable for students, research mathematicians, and readers with backgrounds in other exact sciences, including chemistry, molecular biology and physics.The book covers basic notions in knot theory, as well as new methods for handling open problems such as unknotting number, braid family representatives, invertibility, amphicheirality, undetectability, non-algebraic tangles, polyhedral links, and (2,2)-moves.Hands-on computations using Mathematica or the webMathematica package LinKnot and beautiful illustrations facilitate better learning and understanding. LinKnot is also a powerful research tool for experimental mathematics implementation of Caudron's ideas. The use of Conway notation enables experimenting with large families of knots and links.Conjectures discussed in the book are explained at length. The beauty, universality and diversity of knot theory is illuminated through various non-standard applications: mirror curves, fullerens, self-referential systems, and KL automata.

LinKnot

LinKnot
Author: Slavik V. Jablan
Publisher: World Scientific
Total Pages: 497
Release: 2007
Genre: Mathematics
ISBN: 9812772235

LinKnot - Knot Theory by Computer provides a unique view of selected topics in knot theory suitable for students, research mathematicians, and readers with backgrounds in other exact sciences, including chemistry, molecular biology and physics. The book covers basic notions in knot theory, as well as new methods for handling open problems such as unknotting number, braid family representatives, invertibility, amphicheirality, undetectability, non-algebraic tangles, polyhedral links, and (2,2)-moves. Conjectures discussed in the book are explained at length. The beauty, universality and diversity of knot theory is illuminated through various non-standard applications: mirror curves, fullerens, self-referential systems, and KL automata.

LinKnot

LinKnot
Author: Slavik V. Jablan
Publisher: World Scientific
Total Pages: 497
Release: 2007
Genre: Mathematics
ISBN: 9812772243

LinKnot OCo Knot Theory by Computer provides a unique view of selected topics in knot theory suitable for students, research mathematicians, and readers with backgrounds in other exact sciences, including chemistry, molecular biology and physics. The book covers basic notions in knot theory, as well as new methods for handling open problems such as unknotting number, braid family representatives, invertibility, amphicheirality, undetectability, non-algebraic tangles, polyhedral links, and (2,2)-moves. Hands-on computations using Mathematica or the webMathematica package LinKnot (available online at http: //math.ict.edu.rs ) and beautiful illustrations facilitate better learning and understanding. LinKnot is also a powerful research tool for experimental mathematics implementation of Caudron's ideas. The use of Conway notation enables experimenting with large families of knots and links. Conjectures discussed in the book are explained at length. The beauty, universality and diversity of knot theory is illuminated through various non-standard applications: mirror curves, fullerens, self-referential systems, and KL automata. Sample Chapter(s). 1.1 Basic graph theory (176 KB). Contents: Notation of Knots and Links; Recognition and Generation of Knots and Links; History of Knot Theory and Applications of Knots and Links. Readership: Researchers interested in knot theory and users of Mathematica."

Knot Theory

Knot Theory
Author: Charles Livingston
Publisher: American Mathematical Soc.
Total Pages: 259
Release: 1993-12-31
Genre: Knot theory
ISBN: 1614440239

Knot Theory, a lively exposition of the mathematics of knotting, will appeal to a diverse audience from the undergraduate seeking experience outside the traditional range of studies to mathematicians wanting a leisurely introduction to the subject. Graduate students beginning a program of advanced study will find a worthwhile overview, and the reader will need no training beyond linear algebra to understand the mathematics presented. The interplay between topology and algebra, known as algebraic topology, arises early in the book when tools from linear algebra and from basic group theory are introduced to study the properties of knots. Livingston guides readers through a general survey of the topic showing how to use the techniques of linear algebra to address some sophisticated problems, including one of mathematics's most beautiful topics—symmetry. The book closes with a discussion of high-dimensional knot theory and a presentation of some of the recent advances in the subject—the Conway, Jones, and Kauffman polynomials. A supplementary section presents the fundamental group which is a centerpiece of algebraic topology.

Introductory Lectures on Knot Theory

Introductory Lectures on Knot Theory
Author: Louis H. Kauffman
Publisher: World Scientific
Total Pages: 577
Release: 2012
Genre: Mathematics
ISBN: 9814313009

More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heegaard-Floer homology, that lifts the Alexander polynomial. These two significantly different theories are closely related and the dependencies are the object of intensive study. These ideas mark the beginning of a new era in knot theory that includes relationships with four-dimensional problems and the creation of new forms of algebraic topology relevant to knot theory. The theory of skein modules is an older development also having its roots in Jones discovery. Another significant and related development is the theory of virtual knots originated independently by Kauffman and by Goussarov Polyak and Viro in the '90s. All these topics and their relationships are the subject of the survey papers in this book.

Knot Theory

Knot Theory
Author: Vassily Olegovich Manturov
Publisher: CRC Press
Total Pages: 507
Release: 2018-04-17
Genre: Mathematics
ISBN: 1351359126

Over the last fifteen years, the face of knot theory has changed due to various new theories and invariants coming from physics, topology, combinatorics and alge-bra. It suffices to mention the great progress in knot homology theory (Khovanov homology and Ozsvath-Szabo Heegaard-Floer homology), the A-polynomial which give rise to strong invariants of knots and 3-manifolds, in particular, many new unknot detectors. New to this Edition is a discussion of Heegaard-Floer homology theory and A-polynomial of classical links, as well as updates throughout the text. Knot Theory, Second Edition is notable not only for its expert presentation of knot theory’s state of the art but also for its accessibility. It is valuable as a profes-sional reference and will serve equally well as a text for a course on knot theory.

Knot Theory and Its Applications

Knot Theory and Its Applications
Author: Kunio Murasugi
Publisher: Springer Science & Business Media
Total Pages: 348
Release: 2009-12-29
Genre: Mathematics
ISBN: 0817647198

This book introduces the study of knots, providing insights into recent applications in DNA research and graph theory. It sets forth fundamental facts such as knot diagrams, braid representations, Seifert surfaces, tangles, and Alexander polynomials. It also covers more recent developments and special topics, such as chord diagrams and covering spaces. The author avoids advanced mathematical terminology and intricate techniques in algebraic topology and group theory. Numerous diagrams and exercises help readers understand and apply the theory. Each chapter includes a supplement with interesting historical and mathematical comments.

Quantum Invariants

Quantum Invariants
Author: Tomotada Ohtsuki
Publisher: World Scientific
Total Pages: 516
Release: 2002
Genre: Invariants
ISBN: 9789812811172

This book provides an extensive and self-contained presentation of quantum and related invariants of knots and 3-manifolds. Polynomial invariants of knots, such as the Jones and Alexander polynomials, are constructed as quantum invariants, i.e. invariants derived from representations of quantum groups and from the monodromy of solutions to the Knizhnik-Zamolodchikov equation. With the introduction of the Kontsevich invariant and the theory of Vassiliev invariants, the quantum invariants become well-organized. Quantum and perturbative invariants, the LMO invariant, and finite type invariants of 3-manifolds are discussed. The ChernOCoSimons field theory and the WessOCoZuminoOCoWitten model are described as the physical background of the invariants. Contents: Knots and Polynomial Invariants; Braids and Representations of the Braid Groups; Operator Invariants of Tangles via Sliced Diagrams; Ribbon Hopf Algebras and Invariants of Links; Monodromy Representations of the Braid Groups Derived from the KnizhnikOCoZamolodchikov Equation; The Kontsevich Invariant; Vassiliev Invariants; Quantum Invariants of 3-Manifolds; Perturbative Invariants of Knots and 3-Manifolds; The LMO Invariant; Finite Type Invariants of Integral Homology 3-Spheres. Readership: Researchers, lecturers and graduate students in geometry, topology and mathematical physics."

Invariants And Pictures: Low-dimensional Topology And Combinatorial Group Theory

Invariants And Pictures: Low-dimensional Topology And Combinatorial Group Theory
Author: Vassily Olegovich Manturov
Publisher: World Scientific
Total Pages: 387
Release: 2020-04-22
Genre: Mathematics
ISBN: 9811220131

This book contains an in-depth overview of the current state of the recently emerged and rapidly growing theory of Gnk groups, picture-valued invariants, and braids for arbitrary manifolds. Equivalence relations arising in low-dimensional topology and combinatorial group theory inevitably lead to the study of invariants, and good invariants should be strong and apparent. An interesting case of such invariants is picture-valued invariants, whose values are not algebraic objects, but geometrical constructions, like graphs or polyhedra.In 2015, V O Manturov defined a two-parametric family of groups Gnk and formulated the following principle: if dynamical systems describing a motion of n particles possess a nice codimension 1 property governed by exactly k particles then these dynamical systems possess topological invariants valued in Gnk.The book is devoted to various realisations and generalisations of this principle in the broad sense. The groups Gnk have many epimorphisms onto free products of cyclic groups; hence, invariants constructed from them are powerful enough and easy to compare. However, this construction does not work when we try to deal with points on a 2-surface, since there may be infinitely many geodesics passing through two points. That leads to the notion of another family of groups — Γnk, which give rise to braids on arbitrary manifolds yielding invariants of arbitrary manifolds.

Virtual Knots

Virtual Knots
Author: Vasiliĭ Olegovich Manturov
Publisher: World Scientific
Total Pages: 553
Release: 2012
Genre: Mathematics
ISBN: 9814401129

The book is the first systematic research completely devoted to a comprehensive study of virtual knots and classical knots as its integral part. The book is self-contained and contains up-to-date exposition of the key aspects of virtual (and classical) knot theory. Virtual knots were discovered by Louis Kauffman in 1996. When virtual knot theory arose, it became clear that classical knot theory was a small integral part of a larger theory, and studying properties of virtual knots helped one understand better some aspects of classical knot theory and encouraged the study of further problems. Virtual knot theory finds its applications in classical knot theory. Virtual knot theory occupies an intermediate position between the theory of knots in arbitrary three-manifold and classical knot theory. In this book we present the latest achievements in virtual knot theory including Khovanov homology theory and parity theory due to V O Manturov and graph-link theory due to both authors. By means of parity, one can construct functorial mappings from knots to knots, filtrations on the space of knots, refine many invariants and prove minimality of many series of knot diagrams. Graph-links can be treated as "diagramless knot theory": such "links" have crossings, but they do not have arcs connecting these crossings. It turns out, however, that to graph-links one can extend many methods of classical and virtual knot theories, in particular, the Khovanov homology and the parity theory.