Linear Statistical Inference And Its Applications, 2Nd Ed (With Cd)

Linear Statistical Inference And Its Applications, 2Nd Ed (With Cd)
Author: C. Radhakrishna Rao
Publisher:
Total Pages: 656
Release: 2009-12-23
Genre:
ISBN: 9788126523511

The purpose of this book is to present up-to-date theory and techniques of statistical inference in a logically integrated and practical form. Essentially, it incorporates the important developments in the subject that have taken place in the last three decades. It is written for readers with background knowledge of mathematics and statistics at the undergraduate level. " Algebra of Vectors and Matrices." Probability Theory, Tools and Techniques." Continuous Probability Models." The Theory of Least Squares and Analysis of Variance." Criteria and Methods of Estimation." Large Sample Theory and Methods." Theory of Statistical Inference." Multivariate Analysis.

Linear Statistical Models

Linear Statistical Models
Author: James H. Stapleton
Publisher: John Wiley & Sons
Total Pages: 517
Release: 2009-08-03
Genre: Mathematics
ISBN: 0470231467

Praise for the First Edition "This impressive and eminently readable text . . . [is] a welcome addition to the statistical literature." —The Indian Journal of Statistics Revised to reflect the current developments on the topic, Linear Statistical Models, Second Edition provides an up-to-date approach to various statistical model concepts. The book includes clear discussions that illustrate key concepts in an accessible and interesting format while incorporating the most modern software applications. This Second Edition follows an introduction-theorem-proof-examples format that allows for easier comprehension of how to use the methods and recognize the associated assumptions and limits. In addition to discussions on the methods of random vectors, multiple regression techniques, simultaneous confidence intervals, and analysis of frequency data, new topics such as mixed models and curve fitting of models have been added to thoroughly update and modernize the book. Additional topical coverage includes: An introduction to R and S-Plus® with many examples Multiple comparison procedures Estimation of quantiles for regression models An emphasis on vector spaces and the corresponding geometry Extensive graphical displays accompany the book's updated descriptions and examples, which can be simulated using R, S-Plus®, and SAS® code. Problems at the end of each chapter allow readers to test their understanding of the presented concepts, and additional data sets are available via the book's FTP site. Linear Statistical Models, Second Edition is an excellent book for courses on linear models at the upper-undergraduate and graduate levels. It also serves as a comprehensive reference for statisticians, engineers, and scientists who apply multiple regression or analysis of variance in their everyday work.

Applied Linear Regression Models

Applied Linear Regression Models
Author: Michael H. Kutner
Publisher: McGraw-Hill/Irwin
Total Pages: 701
Release: 2003-09
Genre: Mathematics
ISBN: 9780072955675

Kutner, Neter, Nachtsheim, Wasserman, Applied Linear Regression Models, 4/e (ALRM4e) is the long established leading authoritative text and reference on regression (previously Neter was lead author.) For students in most any discipline where statistical analysis or interpretation is used, ALRM has served as the industry standard. The text includes brief introductory and review material, and then proceeds through regression and modeling. All topics are presented in a precise and clear style supported with solved examples, numbered formulae, graphic illustrations, and "Notes" to provide depth and statistical accuracy and precision. Applications used within the text and the hallmark problems, exercises, and projects are drawn from virtually all disciplines and fields providing motivation for students in any discipline. ALRM 4e provides an increased use of computing and graphical analysis throughout, without sacrificing concepts or rigor by using larger data sets in examples and exercises, and where methods can be automated within software without loss of understanding, it is so done.

Models for Probability and Statistical Inference

Models for Probability and Statistical Inference
Author: James H. Stapleton
Publisher: John Wiley & Sons
Total Pages: 466
Release: 2007-12-14
Genre: Mathematics
ISBN: 0470183403

This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readers Models for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping. Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses modes of convergence of sequences of random variables, with special attention to convergence in distribution. The second half of the book addresses statistical inference, beginning with a discussion on point estimation and followed by coverage of consistency and confidence intervals. Further areas of exploration include: distributions defined in terms of the multivariate normal, chi-square, t, and F (central and non-central); the one- and two-sample Wilcoxon test, together with methods of estimation based on both; linear models with a linear space-projection approach; and logistic regression. Each section contains a set of problems ranging in difficulty from simple to more complex, and selected answers as well as proofs to almost all statements are provided. An abundant amount of figures in addition to helpful simulations and graphs produced by the statistical package S-Plus(r) are included to help build the intuition of readers.

Linear Models in Statistics

Linear Models in Statistics
Author: Alvin C. Rencher
Publisher: John Wiley & Sons
Total Pages: 690
Release: 2008-01-07
Genre: Mathematics
ISBN: 0470192607

The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.

Statistical Inference

Statistical Inference
Author: George Casella
Publisher: CRC Press
Total Pages: 1746
Release: 2024-05-23
Genre: Mathematics
ISBN: 1040024025

This classic textbook builds theoretical statistics from the first principles of probability theory. Starting from the basics of probability, the authors develop the theory of statistical inference using techniques, definitions, and concepts that are statistical and natural extensions, and consequences, of previous concepts. It covers all topics from a standard inference course including: distributions, random variables, data reduction, point estimation, hypothesis testing, and interval estimation. Features The classic graduate-level textbook on statistical inference Develops elements of statistical theory from first principles of probability Written in a lucid style accessible to anyone with some background in calculus Covers all key topics of a standard course in inference Hundreds of examples throughout to aid understanding Each chapter includes an extensive set of graduated exercises Statistical Inference, Second Edition is primarily aimed at graduate students of statistics, but can be used by advanced undergraduate students majoring in statistics who have a solid mathematics background. It also stresses the more practical uses of statistical theory, being more concerned with understanding basic statistical concepts and deriving reasonable statistical procedures, while less focused on formal optimality considerations. This is a reprint of the second edition originally published by Cengage Learning, Inc. in 2001.

Elements of Distribution Theory

Elements of Distribution Theory
Author: Thomas A. Severini
Publisher: Cambridge University Press
Total Pages: 534
Release: 2005-08-08
Genre: Business & Economics
ISBN: 9780521844727

This detailed introduction to distribution theory uses no measure theory, making it suitable for students in statistics and econometrics as well as for researchers who use statistical methods. Good backgrounds in calculus and linear algebra are important and a course in elementary mathematical analysis is useful, but not required. An appendix gives a detailed summary of the mathematical definitions and results that are used in the book. Topics covered range from the basic distribution and density functions, expectation, conditioning, characteristic functions, cumulants, convergence in distribution and the central limit theorem to more advanced concepts such as exchangeability, models with a group structure, asymptotic approximations to integrals, orthogonal polynomials and saddlepoint approximations. The emphasis is on topics useful in understanding statistical methodology; thus, parametric statistical models and the distribution theory associated with the normal distribution are covered comprehensively.

Selected Papers of C.R. Rao

Selected Papers of C.R. Rao
Author: Calyampudi Radhakrishna Rao
Publisher: Taylor & Francis
Total Pages: 520
Release: 1989
Genre: Mathematical statistics
ISBN: 9788122412857

The Volume Five Of Selected Papers Of C.R. Rao Consists Of 32 Papers That Appeared In Various Publications From 1985. These Papers Are Selected To Showcase Some Of The Fundamental Contributions In Characterizations Of Probability Distributions, Density Estimation, Analysis Of Multivariate Familial Data, Correspondence Analysis, Shape And Size Analysis, Signal Detection, Inference Based On Quadratic Entropy, Bootstrap, L-L Norm, Convex Discrepancy Function Etc., Estimation Problems In Univariate And Multivariate Linear Models And Regression Models Using Unified Theory Of Linear Estimation, M-Estimates, Lad Estimates Etc. And Many More Novel Concepts And Ideas With Enormous Potential For Further Research And In Which Active Research Is Being Carried Out.The Highlight Of This Volume Is The Stimulating Retrospection Of Prof. C.R. Rao About His Work Spanning The Last Three Score Years. An Updated Bibliography And A Brief Biographical Profile Of Prof. Rao Are Also Included.These Volumes Are Intended Not Only As A Ready Reference To Most Of Prof. Rao'S Oft Quoted And Used Results But Also To Inspire And Initiate Research Workers To The Broad Spectrum Of Areas In Theoretical And Applied Statistics In Which Prof. Rao Has Contributed.

Introduction to Regression Analysis

Introduction to Regression Analysis
Author: Michael A. Golberg
Publisher: WIT Press
Total Pages: 453
Release: 2004
Genre: Mathematics
ISBN: 1853126241

In order to apply regression analysis effectively, it is necessary to understand both the underlying theory and its practical application. This book explores conventional topics as well as recent practical developments, linking theory with application. Intended to continue from where most basic statistics texts end, it is designed primarily for advanced undergraduates, graduate students and researchers in various fields of engineering, chemical and physical sciences, mathematical sciences and statistics.