Geographically Weighted Regression

Geographically Weighted Regression
Author: A. Stewart Fotheringham
Publisher: John Wiley & Sons
Total Pages: 282
Release: 2003-02-21
Genre: Science
ISBN: 0470855258

Geographical Weighted Regression (GWR) is a new local modelling technique for analysing spatial analysis. This technique allows local as opposed to global models of relationships to be measured and mapped. This is the first and only book on this technique, offering comprehensive coverage on this new 'hot' topic in spatial analysis. * Provides step-by-step examples of how to use the GWR model using data sets and examples on issues such as house price determinants, educational attainment levels and school performance statistics * Contains a broad discussion of and basic concepts on GWR through to ideas on statistical inference for GWR models * uniquely features accompanying author-written software that allows users to undertake sophisticated and complex forms of GWR within a user-friendly, Windows-based, front-end (see book for details).

Spatial Analysis Methods and Practice

Spatial Analysis Methods and Practice
Author: George Grekousis
Publisher: Cambridge University Press
Total Pages: 535
Release: 2020-06-11
Genre: Reference
ISBN: 1108498981

An introductory overview of spatial analysis and statistics through GIS, including worked examples and critical analysis of results.

Linear Models in Statistics

Linear Models in Statistics
Author: Alvin C. Rencher
Publisher: John Wiley & Sons
Total Pages: 690
Release: 2008-01-07
Genre: Mathematics
ISBN: 0470192607

The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.

Advances in Spatial Econometrics

Advances in Spatial Econometrics
Author: Luc Anselin
Publisher: Springer Science & Business Media
Total Pages: 516
Release: 2013-03-09
Genre: Business & Economics
ISBN: 3662056178

World-renowned experts in spatial statistics and spatial econometrics present the latest advances in specification and estimation of spatial econometric models. This includes information on the development of tools and software, and various applications. The text introduces new tests and estimators for spatial regression models, including discrete choice and simultaneous equation models. The performance of techniques is demonstrated through simulation results and a wide array of applications related to economic growth, international trade, knowledge externalities, population-employment dynamics, urban crime, land use, and environmental issues. An exciting new text for academics with a theoretical interest in spatial statistics and econometrics, and for practitioners looking for modern and up-to-date techniques.

Linear Regression

Linear Regression
Author: Damodar N. Gujarati
Publisher: SAGE Publications
Total Pages: 282
Release: 2018-06-14
Genre: Social Science
ISBN: 1544336551

Damodar N. Gujarati’s Linear Regression: A Mathematical Introduction presents linear regression theory in a rigorous, but approachable manner that is accessible to students in all social sciences. This concise title goes step-by-step through the intricacies, and theory and practice of regression analysis. The technical discussion is provided in a clear style that doesn’t overwhelm the reader with abstract mathematics. End-of-chapter exercises test mastery of the content and advanced discussion of some of the topics is offered in the appendices.

Introductory Business Statistics 2e

Introductory Business Statistics 2e
Author: Alexander Holmes
Publisher:
Total Pages: 1801
Release: 2023-12-13
Genre: Business & Economics
ISBN:

Introductory Business Statistics 2e aligns with the topics and objectives of the typical one-semester statistics course for business, economics, and related majors. The text provides detailed and supportive explanations and extensive step-by-step walkthroughs. The author places a significant emphasis on the development and practical application of formulas so that students have a deeper understanding of their interpretation and application of data. Problems and exercises are largely centered on business topics, though other applications are provided in order to increase relevance and showcase the critical role of statistics in a number of fields and real-world contexts. The second edition retains the organization of the original text. Based on extensive feedback from adopters and students, the revision focused on improving currency and relevance, particularly in examples and problems. This is an adaptation of Introductory Business Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.

Archaeological Spatial Analysis

Archaeological Spatial Analysis
Author: Mark Gillings
Publisher: Routledge
Total Pages: 545
Release: 2020-01-16
Genre: Social Science
ISBN: 1351243845

Effective spatial analysis is an essential element of archaeological research; this book is a unique guide to choosing the appropriate technique, applying it correctly and understanding its implications both theoretically and practically. Focusing upon the key techniques used in archaeological spatial analysis, this book provides the authoritative, yet accessible, methodological guide to the subject which has thus far been missing from the corpus. Each chapter tackles a specific technique or application area and follows a clear and coherent structure. First is a richly referenced introduction to the particular technique, followed by a detailed description of the methodology, then an archaeological case study to illustrate the application of the technique, and conclusions that point to the implications and potential of the technique within archaeology. The book is designed to function as the main textbook for archaeological spatial analysis courses at undergraduate and post-graduate level, while its user-friendly structure makes it also suitable for self-learning by archaeology students as well as researchers and professionals.

Spatial Regression Analysis Using Eigenvector Spatial Filtering

Spatial Regression Analysis Using Eigenvector Spatial Filtering
Author: Daniel Griffith
Publisher: Academic Press
Total Pages: 288
Release: 2019-09-14
Genre: Business & Economics
ISBN: 0128156929

Spatial Regression Analysis Using Eigenvector Spatial Filtering provides theoretical foundations and guides practical implementation of the Moran eigenvector spatial filtering (MESF) technique. MESF is a novel and powerful spatial statistical methodology that allows spatial scientists to account for spatial autocorrelation in their georeferenced data analyses. Its appeal is in its simplicity, yet its implementation drawbacks include serious complexities associated with constructing an eigenvector spatial filter. This book discusses MESF specifications for various intermediate-level topics, including spatially varying coefficients models, (non) linear mixed models, local spatial autocorrelation, space-time models, and spatial interaction models. Spatial Regression Analysis Using Eigenvector Spatial Filtering is accompanied by sample R codes and a Windows application with illustrative datasets so that readers can replicate the examples in the book and apply the methodology to their own application projects. It also includes a Foreword by Pierre Legendre. - Reviews the uses of ESF across linear regression, generalized linear regression, spatial autocorrelation measurement, and spatially varying coefficient models - Includes computer code and template datasets for further modeling - Provides comprehensive coverage of related concepts in spatial data analysis and spatial statistics