Linear Differential Equations In The Complex Domain
Download Linear Differential Equations In The Complex Domain full books in PDF, epub, and Kindle. Read online free Linear Differential Equations In The Complex Domain ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Yoshishige Haraoka |
Publisher | : Springer Nature |
Total Pages | : 396 |
Release | : 2020-11-16 |
Genre | : Mathematics |
ISBN | : 3030546632 |
This book provides a detailed introduction to recent developments in the theory of linear differential systems and integrable total differential systems. Starting from the basic theory of linear ordinary differential equations and integrable systems, it proceeds to describe Katz theory and its applications, extending it to the case of several variables. In addition, connection problems, deformation theory, and the theory of integral representations are comprehensively covered. Complete proofs are given, offering the reader a precise account of the classical and modern theory of linear differential equations in the complex domain, including an exposition of Pfaffian systems and their monodromy problems. The prerequisites are a course in complex analysis and the basics of differential equations, topology and differential geometry. This book will be useful for graduate students, specialists in differential equations, and for non-specialists who want to use differential equations.
Author | : Einar Hille |
Publisher | : Courier Corporation |
Total Pages | : 514 |
Release | : 1997-01-01 |
Genre | : Mathematics |
ISBN | : 9780486696201 |
Graduate-level text offers full treatments of existence theorems, representation of solutions by series, theory of majorants, dominants and minorants, questions of growth, much more. Includes 675 exercises. Bibliography.
Author | : Yasutaka Sibuya |
Publisher | : American Mathematical Soc. |
Total Pages | : 286 |
Release | : 2008-06-26 |
Genre | : Mathematics |
ISBN | : 0821846760 |
This book is a translation of a 1976 book originally written in Japanese. The main attention is paid to intrinsic aspects of problems related to linear ordinary differential equations in complex domains. Examples of the problems discussed in the book include the Riemann problem on the Riemann sphere, a characterization of regular singularities, and a classification of meromorphic differential equations. Since the original book was published, many new ideas have developed, such as applications of D-modules, Gevrey asymptotics, cohomological methods, $k$-summability, and studies of differential equations containing parameters. Five appendices, added in the present edition, briefly cover these new ideas. In addition, more than 100 references have been added. This book introduces the reader to the essential facts concerning the structure of solutions of linear differential equations in the complex domain and illuminates the intrinsic meaning of older results by means of more modern ideas. A useful reference for research mathematicians, this book would also be suitable as a textbook in a graduate course or seminar.
Author | : P. Schapira |
Publisher | : Springer Science & Business Media |
Total Pages | : 225 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642616658 |
The words "microdifferential systems in the complex domain" refer to seve ral branches of mathematics: micro local analysis, linear partial differential equations, algebra, and complex analysis. The microlocal point of view first appeared in the study of propagation of singularities of differential equations, and is spreading now to other fields of mathematics such as algebraic geometry or algebraic topology. How ever it seems that many analysts neglect very elementary tools of algebra, which forces them to confine themselves to the study of a single equation or particular square matrices, or to carryon heavy and non-intrinsic formula tions when studying more general systems. On the other hand, many alge braists ignore everything about partial differential equations, such as for example the "Cauchy problem", although it is a very natural and geometri cal setting of "inverse image". Our aim will be to present to the analyst the algebraic methods which naturally appear in such problems, and to make available to the algebraist some topics from the theory of partial differential equations stressing its geometrical aspects. Keeping this goal in mind, one can only remain at an elementary level.
Author | : Gerald Teschl |
Publisher | : American Mathematical Society |
Total Pages | : 370 |
Release | : 2024-01-12 |
Genre | : Mathematics |
ISBN | : 147047641X |
This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.
Author | : Edward Lindsay Ince |
Publisher | : |
Total Pages | : 578 |
Release | : 1927 |
Genre | : Differential equations |
ISBN | : |
Author | : Wolfgang Wasow |
Publisher | : Courier Dover Publications |
Total Pages | : 385 |
Release | : 2018-03-21 |
Genre | : Mathematics |
ISBN | : 0486824586 |
This outstanding text concentrates on the mathematical ideas underlying various asymptotic methods for ordinary differential equations that lead to full, infinite expansions. "A book of great value." — Mathematical Reviews. 1976 revised edition.
Author | : I︠U︡. S. Ilʹi︠a︡shenko |
Publisher | : American Mathematical Soc. |
Total Pages | : 641 |
Release | : 2008 |
Genre | : Mathematics |
ISBN | : 0821836676 |
The book combines the features of a graduate-level textbook with those of a research monograph and survey of the recent results on analysis and geometry of differential equations in the real and complex domain. As a graduate textbook, it includes self-contained, sometimes considerably simplified demonstrations of several fundamental results, which previously appeared only in journal publications (desingularization of planar analytic vector fields, existence of analytic separatrices, positive and negative results on the Riemann-Hilbert problem, Ecalle-Voronin and Martinet-Ramis moduli, solution of the Poincare problem on the degree of an algebraic separatrix, etc.). As a research monograph, it explores in a systematic way the algebraic decidability of local classification problems, rigidity of holomorphic foliations, etc. Each section ends with a collection of problems, partly intended to help the reader to gain understanding and experience with the material, partly drafting demonstrations of the mor The exposition of the book is mostly geometric, though the algebraic side of the constructions is also prominently featured. on several occasions the reader is introduced to adjacent areas, such as intersection theory for divisors on the projective plane or geometric theory of holomorphic vector bundles with meromorphic connections. The book provides the reader with the principal tools of the modern theory of analytic differential equations and intends to serve as a standard source for references in this area.
Author | : Haim Brezis |
Publisher | : Springer Science & Business Media |
Total Pages | : 600 |
Release | : 2010-11-02 |
Genre | : Mathematics |
ISBN | : 0387709142 |
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Author | : Earl A. Coddington |
Publisher | : |
Total Pages | : 292 |
Release | : 1968 |
Genre | : Differential equations |
ISBN | : |