Linear and Quasilinear Parabolic Systems: Sobolev Space Theory

Linear and Quasilinear Parabolic Systems: Sobolev Space Theory
Author: David Hoff
Publisher: American Mathematical Soc.
Total Pages: 226
Release: 2020-11-18
Genre: Education
ISBN: 1470461617

This monograph presents a systematic theory of weak solutions in Hilbert-Sobolev spaces of initial-boundary value problems for parabolic systems of partial differential equations with general essential and natural boundary conditions and minimal hypotheses on coefficients. Applications to quasilinear systems are given, including local existence for large data, global existence near an attractor, the Leray and Hopf theorems for the Navier-Stokes equations and results concerning invariant regions. Supplementary material is provided, including a self-contained treatment of the calculus of Sobolev functions on the boundaries of Lipschitz domains and a thorough discussion of measurability considerations for elements of Bochner-Sobolev spaces. This book will be particularly useful both for researchers requiring accessible and broadly applicable formulations of standard results as well as for students preparing for research in applied analysis. Readers should be familiar with the basic facts of measure theory and functional analysis, including weak derivatives and Sobolev spaces. Prior work in partial differential equations is helpful but not required.

Linear and Quasilinear Parabolic Problems

Linear and Quasilinear Parabolic Problems
Author: Herbert Amann
Publisher: Birkhäuser
Total Pages: 366
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034892217

In this treatise we present the semigroup approach to quasilinear evolution equa of parabolic type that has been developed over the last ten years, approxi tions mately. It emphasizes the dynamic viewpoint and is sufficiently general and flexible to encompass a great variety of concrete systems of partial differential equations occurring in science, some of those being of rather 'nonstandard' type. In partic ular, to date it is the only general method that applies to noncoercive systems. Although we are interested in nonlinear problems, our method is based on the theory of linear holomorphic semigroups. This distinguishes it from the theory of nonlinear contraction semigroups whose basis is a nonlinear version of the Hille Yosida theorem: the Crandall-Liggett theorem. The latter theory is well-known and well-documented in the literature. Even though it is a powerful technique having found many applications, it is limited in its scope by the fact that, in concrete applications, it is closely tied to the maximum principle. Thus the theory of nonlinear contraction semigroups does not apply to systems, in general, since they do not allow for a maximum principle. For these reasons we do not include that theory.

Maximal Function Methods for Sobolev Spaces

Maximal Function Methods for Sobolev Spaces
Author: Juha Kinnunen
Publisher: American Mathematical Soc.
Total Pages: 354
Release: 2021-08-02
Genre: Education
ISBN: 1470465752

This book discusses advances in maximal function methods related to Poincaré and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Capacities are needed for fine properties of Sobolev functions and characterization of Sobolev spaces with zero boundary values. The authors consider several uniform quantitative conditions that are self-improving, such as Hardy's inequalities, capacity density conditions, and reverse Hölder inequalities. They also study Muckenhoupt weight properties of distance functions and combine these with weighted norm inequalities; notions of dimension are then used to characterize density conditions and to give sufficient and necessary conditions for Hardy's inequalities. At the end of the book, the theory of weak solutions to the p p-Laplace equation and the use of maximal function techniques is this context are discussed. The book is directed to researchers and graduate students interested in applications of geometric and harmonic analysis in Sobolev spaces and partial differential equations.

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Functional Analysis, Sobolev Spaces and Partial Differential Equations
Author: Haim Brezis
Publisher: Springer Science & Business Media
Total Pages: 603
Release: 2010-11-10
Genre: Mathematics
ISBN: 0387709134

This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Hopf Algebras and Galois Module Theory

Hopf Algebras and Galois Module Theory
Author: Lindsay N. Childs
Publisher: American Mathematical Soc.
Total Pages: 311
Release: 2021-11-10
Genre: Education
ISBN: 1470465167

Hopf algebras have been shown to play a natural role in studying questions of integral module structure in extensions of local or global fields. This book surveys the state of the art in Hopf-Galois theory and Hopf-Galois module theory and can be viewed as a sequel to the first author's book, Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory, which was published in 2000. The book is divided into two parts. Part I is more algebraic and focuses on Hopf-Galois structures on Galois field extensions, as well as the connection between this topic and the theory of skew braces. Part II is more number theoretical and studies the application of Hopf algebras to questions of integral module structure in extensions of local or global fields. Graduate students and researchers with a general background in graduate-level algebra, algebraic number theory, and some familiarity with Hopf algebras will appreciate the overview of the current state of this exciting area and the suggestions for numerous avenues for further research and investigation.

Perverse Sheaves and Applications to Representation Theory

Perverse Sheaves and Applications to Representation Theory
Author: Pramod N. Achar
Publisher: American Mathematical Soc.
Total Pages: 562
Release: 2021-09-27
Genre: Education
ISBN: 1470455978

Since its inception around 1980, the theory of perverse sheaves has been a vital tool of fundamental importance in geometric representation theory. This book, which aims to make this theory accessible to students and researchers, is divided into two parts. The first six chapters give a comprehensive account of constructible and perverse sheaves on complex algebraic varieties, including such topics as Artin's vanishing theorem, smooth descent, and the nearby cycles functor. This part of the book also has a chapter on the equivariant derived category, and brief surveys of side topics including étale and ℓ-adic sheaves, D-modules, and algebraic stacks. The last four chapters of the book show how to put this machinery to work in the context of selected topics in geometric representation theory: Kazhdan-Lusztig theory; Springer theory; the geometric Satake equivalence; and canonical bases for quantum groups. Recent developments such as the p-canonical basis are also discussed. The book has more than 250 exercises, many of which focus on explicit calculations with concrete examples. It also features a 4-page “Quick Reference” that summarizes the most commonly used facts for computations, similar to a table of integrals in a calculus textbook.

semigroup theory and applications

semigroup theory and applications
Author: Phillipe Clement
Publisher: CRC Press
Total Pages: 476
Release: 2020-12-22
Genre: Mathematics
ISBN: 1000154211

This book contains articles on maximal regulatory problems, interpolation spaces, multiplicative perturbations of generators, linear and nonlinear evolution equations, integrodifferential equations, dual semigroups, positive semigroups, applications to control theory, and boundary value problems.

Dynamics of Evolutionary Equations

Dynamics of Evolutionary Equations
Author: George R. Sell
Publisher: Springer Science & Business Media
Total Pages: 680
Release: 2013-04-17
Genre: Mathematics
ISBN: 1475750374

The theory and applications of infinite dimensional dynamical systems have attracted the attention of scientists for quite some time. This book serves as an entrée for scholars beginning their journey into the world of dynamical systems, especially infinite dimensional spaces. The main approach involves the theory of evolutionary equations.

Regularity Problem for Quasilinear Elliptic and Parabolic Systems

Regularity Problem for Quasilinear Elliptic and Parabolic Systems
Author: Alexander Koshelev
Publisher: Springer
Total Pages: 277
Release: 2006-11-14
Genre: Mathematics
ISBN: 3540447725

The smoothness of solutions for quasilinear systems is one of the most important problems in modern mathematical physics. This book deals with regular or strong solutions for general quasilinear second-order elliptic and parabolic systems. Applications in solid mechanics, hydrodynamics, elasticity and plasticity are described. The results presented are based on two main ideas: the universal iterative method, and explicit, sometimes sharp, coercivity estimates in weighted spaces. Readers are assumed to have a standard background in analysis and PDEs.

Sampling in Combinatorial and Geometric Set Systems

Sampling in Combinatorial and Geometric Set Systems
Author: Nabil H. Mustafa
Publisher: American Mathematical Society
Total Pages: 251
Release: 2022-01-14
Genre: Mathematics
ISBN: 1470461560

Understanding the behavior of basic sampling techniques and intrinsic geometric attributes of data is an invaluable skill that is in high demand for both graduate students and researchers in mathematics, machine learning, and theoretical computer science. The last ten years have seen significant progress in this area, with many open problems having been resolved during this time. These include optimal lower bounds for epsilon-nets for many geometric set systems, the use of shallow-cell complexity to unify proofs, simpler and more efficient algorithms, and the use of epsilon-approximations for construction of coresets, to name a few. This book presents a thorough treatment of these probabilistic, combinatorial, and geometric methods, as well as their combinatorial and algorithmic applications. It also revisits classical results, but with new and more elegant proofs. While mathematical maturity will certainly help in appreciating the ideas presented here, only a basic familiarity with discrete mathematics, probability, and combinatorics is required to understand the material.