Limit Theorems For The Riemann Zeta Function
Download Limit Theorems For The Riemann Zeta Function full books in PDF, epub, and Kindle. Read online free Limit Theorems For The Riemann Zeta Function ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Antanas Laurincikas |
Publisher | : Springer Science & Business Media |
Total Pages | : 316 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 9401720916 |
The subject of this book is probabilistic number theory. In a wide sense probabilistic number theory is part of the analytic number theory, where the methods and ideas of probability theory are used to study the distribution of values of arithmetic objects. This is usually complicated, as it is difficult to say anything about their concrete values. This is why the following problem is usually investigated: given some set, how often do values of an arithmetic object get into this set? It turns out that this frequency follows strict mathematical laws. Here we discover an analogy with quantum mechanics where it is impossible to describe the chaotic behaviour of one particle, but that large numbers of particles obey statistical laws. The objects of investigation of this book are Dirichlet series, and, as the title shows, the main attention is devoted to the Riemann zeta-function. In studying the distribution of values of Dirichlet series the weak convergence of probability measures on different spaces (one of the principle asymptotic probability theory methods) is used. The application of this method was launched by H. Bohr in the third decade of this century and it was implemented in his works together with B. Jessen. Further development of this idea was made in the papers of B. Jessen and A. Wintner, V. Borchsenius and B.
Author | : Anatoly A. Karatsuba |
Publisher | : Walter de Gruyter |
Total Pages | : 409 |
Release | : 2011-05-03 |
Genre | : Mathematics |
ISBN | : 3110886146 |
The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany
Author | : Antanas Laurincikas |
Publisher | : Springer Science & Business Media |
Total Pages | : 192 |
Release | : 2013-12-11 |
Genre | : Mathematics |
ISBN | : 9401764018 |
The Lerch zeta-function is the first monograph on this topic, which is a generalization of the classic Riemann, and Hurwitz zeta-functions. Although analytic results have been presented previously in various monographs on zeta-functions, this is the first book containing both analytic and probability theory of Lerch zeta-functions. The book starts with classical analytical theory (Euler gamma-functions, functional equation, mean square). The majority of the presented results are new: on approximate functional equations and its applications and on zero distribution (zero-free regions, number of nontrivial zeros etc). Special attention is given to limit theorems in the sense of the weak convergence of probability measures for the Lerch zeta-function. From limit theorems in the space of analytic functions the universitality and functional independence is derived. In this respect the book continues the research of the first author presented in the monograph Limit Theorems for the Riemann zeta-function. This book will be useful to researchers and graduate students working in analytic and probabilistic number theory, and can also be used as a textbook for postgraduate students.
Author | : Peter B. Borwein |
Publisher | : Springer Science & Business Media |
Total Pages | : 543 |
Release | : 2008 |
Genre | : Mathematics |
ISBN | : 0387721258 |
The Riemann Hypothesis has become the Holy Grail of mathematics in the century and a half since 1859 when Bernhard Riemann, one of the extraordinary mathematical talents of the 19th century, originally posed the problem. While the problem is notoriously difficult, and complicated even to state carefully, it can be loosely formulated as "the number of integers with an even number of prime factors is the same as the number of integers with an odd number of prime factors." The Hypothesis makes a very precise connection between two seemingly unrelated mathematical objects, namely prime numbers and the zeros of analytic functions. If solved, it would give us profound insight into number theory and, in particular, the nature of prime numbers. This book is an introduction to the theory surrounding the Riemann Hypothesis. Part I serves as a compendium of known results and as a primer for the material presented in the 20 original papers contained in Part II. The original papers place the material into historical context and illustrate the motivations for research on and around the Riemann Hypothesis. Several of these papers focus on computation of the zeta function, while others give proofs of the Prime Number Theorem, since the Prime Number Theorem is so closely connected to the Riemann Hypothesis. The text is suitable for a graduate course or seminar or simply as a reference for anyone interested in this extraordinary conjecture.
Author | : Jörn Steuding |
Publisher | : Springer |
Total Pages | : 320 |
Release | : 2007-05-26 |
Genre | : Mathematics |
ISBN | : 3540448225 |
These notes present recent results in the value-distribution theory of L-functions with emphasis on the phenomenon of universality. Universality has a strong impact on the zero-distribution: Riemann’s hypothesis is true only if the Riemann zeta-function can approximate itself uniformly. The text proves universality for polynomial Euler products. The authors’ approach follows mainly Bagchi's probabilistic method. Discussion touches on related topics: almost periodicity, density estimates, Nevanlinna theory, and functional independence.
Author | : B. Grigelionis |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 752 |
Release | : 2020-05-18 |
Genre | : Mathematics |
ISBN | : 311231932X |
No detailed description available for "Probability Theory and Mathematical Statistics".
Author | : Harold M. Edwards |
Publisher | : Courier Corporation |
Total Pages | : 338 |
Release | : 2001-01-01 |
Genre | : Mathematics |
ISBN | : 9780486417400 |
Superb high-level study of one of the most influential classics in mathematics examines landmark 1859 publication entitled “On the Number of Primes Less Than a Given Magnitude,” and traces developments in theory inspired by it. Topics include Riemann's main formula, the prime number theorem, the Riemann-Siegel formula, large-scale computations, Fourier analysis, and other related topics. English translation of Riemann's original document appears in the Appendix.
Author | : Bronius Grigelionis |
Publisher | : VSP |
Total Pages | : 758 |
Release | : 1999 |
Genre | : Mathematics |
ISBN | : 9789067643139 |
The 7th Vilnius Conference on Probability Theory and Mathematical Statistics was held together with the 22nd European Meeting of Statisticians, 12--18 August 1998. This Proceedings volume contains invited lectures as well as some selected contributed papers. Topics included in the conference are: general inference; time series; statistics and probability in the life sciences; statistics and probability in natural and social science; applied probability; probability.
Author | : Hubert Hennion |
Publisher | : Springer Science & Business Media |
Total Pages | : 150 |
Release | : 2001-08 |
Genre | : Mathematics |
ISBN | : 3540424156 |
This book shows how techniques from the perturbation theory of operators, applied to a quasi-compact positive kernel, may be used to obtain limit theorems for Markov chains or to describe stochastic properties of dynamical systems. A general framework for this method is given and then applied to treat several specific cases. An essential element of this work is the description of the peripheral spectra of a quasi-compact Markov kernel and of its Fourier-Laplace perturbations. This is first done in the ergodic but non-mixing case. This work is extended by the second author to the non-ergodic case. The only prerequisites for this book are a knowledge of the basic techniques of probability theory and of notions of elementary functional analysis.
Author | : B. Grigelionis |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 624 |
Release | : 2020-05-18 |
Genre | : Mathematics |
ISBN | : 3112319028 |
No detailed description available for "PROB. TH. MATH. ST. ( GRIGELIONIS) VOL. 2 PROC.5/1989 E-BOOK".