Limit Theorems For Functionals Of Random Walks
Download Limit Theorems For Functionals Of Random Walks full books in PDF, epub, and Kindle. Read online free Limit Theorems For Functionals Of Random Walks ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Allan Gut |
Publisher | : Springer Science & Business Media |
Total Pages | : 208 |
Release | : 2013-04-17 |
Genre | : Mathematics |
ISBN | : 1475719922 |
My first encounter with renewal theory and its extensions was in 1967/68 when I took a course in probability theory and stochastic processes, where the then recent book Stochastic Processes by Professor N.D. Prabhu was one of the requirements. Later, my teacher, Professor Carl-Gustav Esseen, gave me some problems in this area for a possible thesis, the result of which was Gut (1974a). Over the years I have, on and off, continued research in this field. During this time it has become clear that many limit theorems can be obtained with the aid of limit theorems for random walks indexed by families of positive, integer valued random variables, typically by families of stopping times. During the spring semester of 1984 Professor Prabhu visited Uppsala and very soon got me started on a book focusing on this aspect. I wish to thank him for getting me into this project, for his advice and suggestions, as well as his kindness and hospitality during my stay at Cornell in the spring of 1985. Throughout the writing of this book I have had immense help and support from Svante Janson. He has not only read, but scrutinized, every word and every formula of this and earlier versions of the manuscript. My gratitude to him for all the errors he found, for his perspicacious suggestions and remarks and, above all, for what his unusual personal as well as scientific generosity has meant to me cannot be expressed in words.
Author | : A. N. Borodin |
Publisher | : American Mathematical Soc. |
Total Pages | : 276 |
Release | : 1995 |
Genre | : Mathematics |
ISBN | : 9780821804384 |
This book examines traditional problems in the theory of random walks: limit theorems for additive and multiadditive functionals defined on a random walk. Although the problems are traditional, the methods presented here are new. The book is intended for experts in probability theory and its applications, as well as for undergraduate and graduate students specializing in these areas.
Author | : Yves Benoist |
Publisher | : Springer |
Total Pages | : 319 |
Release | : 2016-10-20 |
Genre | : Mathematics |
ISBN | : 3319477218 |
The classical theory of random walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple – or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.
Author | : Wolfgang Woess |
Publisher | : Cambridge University Press |
Total Pages | : 350 |
Release | : 2000-02-13 |
Genre | : Mathematics |
ISBN | : 0521552923 |
The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics.
Author | : Gregory F. Lawler |
Publisher | : Springer Science & Business Media |
Total Pages | : 226 |
Release | : 2012-11-06 |
Genre | : Mathematics |
ISBN | : 1461459729 |
A central study in Probability Theory is the behavior of fluctuation phenomena of partial sums of different types of random variable. One of the most useful concepts for this purpose is that of the random walk which has applications in many areas, particularly in statistical physics and statistical chemistry. Originally published in 1991, Intersections of Random Walks focuses on and explores a number of problems dealing primarily with the nonintersection of random walks and the self-avoiding walk. Many of these problems arise in studying statistical physics and other critical phenomena. Topics include: discrete harmonic measure, including an introduction to diffusion limited aggregation (DLA); the probability that independent random walks do not intersect; and properties of walks without self-intersections. The present softcover reprint includes corrections and addenda from the 1996 printing, and makes this classic monograph available to a wider audience. With a self-contained introduction to the properties of simple random walks, and an emphasis on rigorous results, the book will be useful to researchers in probability and statistical physics and to graduate students interested in basic properties of random walks.
Author | : A. A. Borovkov |
Publisher | : Cambridge University Press |
Total Pages | : |
Release | : 2022-06-30 |
Genre | : Mathematics |
ISBN | : 100911560X |
Compound renewal processes (CRPs) are among the most ubiquitous models arising in applications of probability. At the same time, they are a natural generalization of random walks, the most well-studied classical objects in probability theory. This monograph, written for researchers and graduate students, presents the general asymptotic theory and generalizes many well-known results concerning random walks. The book contains the key limit theorems for CRPs, functional limit theorems, integro-local limit theorems, large and moderately large deviation principles for CRPs in the state space and in the space of trajectories, including large deviation principles in boundary crossing problems for CRPs, with an explicit form of the rate functionals, and an extension of the invariance principle for CRPs to the domain of moderately large and small deviations. Applications establish the key limit laws for Markov additive processes, including limit theorems in the domains of normal and large deviations.
Author | : Peter G. Doyle |
Publisher | : American Mathematical Soc. |
Total Pages | : 174 |
Release | : 1984-12-31 |
Genre | : Electric network topology |
ISBN | : 1614440220 |
Probability theory, like much of mathematics, is indebted to physics as a source of problems and intuition for solving these problems. Unfortunately, the level of abstraction of current mathematics often makes it difficult for anyone but an expert to appreciate this fact. Random Walks and electric networks looks at the interplay of physics and mathematics in terms of an example—the relation between elementary electric network theory and random walks —where the mathematics involved is at the college level.
Author | : Rick Durrett |
Publisher | : Cambridge University Press |
Total Pages | : |
Release | : 2010-08-30 |
Genre | : Mathematics |
ISBN | : 113949113X |
This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.
Author | : Mikhail Menshikov |
Publisher | : Cambridge University Press |
Total Pages | : 385 |
Release | : 2016-12-22 |
Genre | : Mathematics |
ISBN | : 1316867366 |
Stochastic systems provide powerful abstract models for a variety of important real-life applications: for example, power supply, traffic flow, data transmission. They (and the real systems they model) are often subject to phase transitions, behaving in one way when a parameter is below a certain critical value, then switching behaviour as soon as that critical value is reached. In a real system, we do not necessarily have control over all the parameter values, so it is important to know how to find critical points and to understand system behaviour near these points. This book is a modern presentation of the 'semimartingale' or 'Lyapunov function' method applied to near-critical stochastic systems, exemplified by non-homogeneous random walks. Applications treat near-critical stochastic systems and range across modern probability theory from stochastic billiards models to interacting particle systems. Spatially non-homogeneous random walks are explored in depth, as they provide prototypical near-critical systems.
Author | : B. Fiedler |
Publisher | : Gulf Professional Publishing |
Total Pages | : 1099 |
Release | : 2002-02-21 |
Genre | : Science |
ISBN | : 0080532845 |
This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others.While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to namejust a few, are ubiquitous dynamical concepts throughout the articles.