Lengths, Widths, Surfaces

Lengths, Widths, Surfaces
Author: Jens Høyrup
Publisher: Springer Science & Business Media
Total Pages: 476
Release: 2013-04-17
Genre: Mathematics
ISBN: 1475736851

In this examination of the Babylonian cuneiform "algebra" texts, based on a detailed investigation of the terminology and discursive organization of the texts, Jens Høyrup proposes that the traditional interpretation must be rejected. The texts turn out to speak not of pure numbers, but of the dimensions and areas of rectangles and other measurable geometrical magnitudes, often serving as representatives of other magnitudes (prices, workdays, etc...), much as pure numbers represent concrete magnitudes in modern applied algebra. Moreover, the geometrical procedures are seen to be reasoned to the same extent as the solutions of modern equation algebra, though not built on any explicit deductive structure.

The Babylonian Theorem

The Babylonian Theorem
Author: Peter S. Rudman
Publisher: Prometheus Books
Total Pages: 248
Release: 2010-01-26
Genre: Mathematics
ISBN: 1615929339

Rudman explores the facisnating history of mathematics among the Babylonians and Egyptians. He formulates a Babylonian Theorem, which he shows was used to derive the Pythagorean Theorem about a millennium before its purported discovery by Pythagoras.

Mathematics in Ancient Egypt

Mathematics in Ancient Egypt
Author: Annette Imhausen
Publisher: Princeton University Press
Total Pages: 248
Release: 2020-10-13
Genre: Mathematics
ISBN: 0691209073

A survey of ancient Egyptian mathematics across three thousand years Mathematics in Ancient Egypt traces the development of Egyptian mathematics, from the end of the fourth millennium BC—and the earliest hints of writing and number notation—to the end of the pharaonic period in Greco-Roman times. Drawing from mathematical texts, architectural drawings, administrative documents, and other sources, Annette Imhausen surveys three thousand years of Egyptian history to present an integrated picture of theoretical mathematics in relation to the daily practices of Egyptian life and social structures. Imhausen shows that from the earliest beginnings, pharaonic civilization used numerical techniques to efficiently control and use their material resources and labor. Even during the Old Kingdom, a variety of metrological systems had already been devised. By the Middle Kingdom, procedures had been established to teach mathematical techniques to scribes in order to make them proficient administrators for their king. Imhausen looks at counterparts to the notation of zero, suggests an explanation for the evolution of unit fractions, and analyzes concepts of arithmetic techniques. She draws connections and comparisons to Mesopotamian mathematics, examines which individuals in Egyptian society held mathematical knowledge, and considers which scribes were trained in mathematical ideas and why. Of interest to historians of mathematics, mathematicians, Egyptologists, and all those curious about Egyptian culture, Mathematics in Ancient Egypt sheds new light on a civilization's unique mathematical evolution.