Lectures On The Geometry Of Numbers
Download Lectures On The Geometry Of Numbers full books in PDF, epub, and Kindle. Read online free Lectures On The Geometry Of Numbers ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Carl Ludwig Siegel |
Publisher | : Springer Science & Business Media |
Total Pages | : 168 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 366208287X |
Carl Ludwig Siegel gave a course of lectures on the Geometry of Numbers at New York University during the academic year 1945-46, when there were hardly any books on the subject other than Minkowski's original one. This volume stems from Siegel's requirements of accuracy in detail, both in the text and in the illustrations, but involving no changes in the structure and style of the lectures as originally delivered. This book is an enticing introduction to Minkowski's great work. It also reveals the workings of a remarkable mind, such as Siegel's with its precision and power and aesthetic charm. It is of interest to the aspiring as well as the established mathematician, with its unique blend of arithmetic, algebra, geometry, and analysis, and its easy readability.
Author | : Michal Krizek |
Publisher | : Springer Science & Business Media |
Total Pages | : 280 |
Release | : 2013-03-14 |
Genre | : Mathematics |
ISBN | : 0387218505 |
The pioneering work of Pierre de Fermat has attracted the attention of mathematicians for over 350 years. This book provides an overview of the many properties of Fermat numbers and demonstrates their applications in areas such as number theory, probability theory, geometry, and signal processing. It is an ideal introduction to the basic mathematical ideas and algebraic methods connected with the Fermat numbers.
Author | : Ana Cannas da Silva |
Publisher | : Springer |
Total Pages | : 240 |
Release | : 2004-10-27 |
Genre | : Mathematics |
ISBN | : 354045330X |
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
Author | : Dirk J. Struik |
Publisher | : Courier Corporation |
Total Pages | : 306 |
Release | : 2011-10-24 |
Genre | : Mathematics |
ISBN | : 0486485951 |
This undergraduate text develops the geometry of plane and space, leading up to conics and quadrics, within the context of metrical, affine, and projective transformations. 1953 edition.
Author | : A. Seidenberg |
Publisher | : Courier Corporation |
Total Pages | : 244 |
Release | : 2012-06-14 |
Genre | : Mathematics |
ISBN | : 0486154734 |
An ideal text for undergraduate courses, this volume takes an axiomatic approach that covers relations between the basic theorems, conics, coordinate systems and linear transformations, quadric surfaces, and the Jordan canonical form. 1962 edition.
Author | : J.W.S. Cassels |
Publisher | : Springer Science & Business Media |
Total Pages | : 364 |
Release | : 1996-12-16 |
Genre | : Mathematics |
ISBN | : 9783540617884 |
From the reviews: "A well-written, very thorough account ... Among the topics are lattices, reduction, Minkowskis Theorem, distance functions, packings, and automorphs; some applications to number theory; excellent bibliographical references." The American Mathematical Monthly
Author | : J.W.S. Cassels |
Publisher | : Springer Science & Business Media |
Total Pages | : 357 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642620353 |
From the reviews: "A well-written, very thorough account ... Among the topics are lattices, reduction, Minkowskis Theorem, distance functions, packings, and automorphs; some applications to number theory; excellent bibliographical references." The American Mathematical Monthly
Author | : Peter Gustav Lejeune Dirichlet |
Publisher | : American Mathematical Soc. |
Total Pages | : 297 |
Release | : 1999 |
Genre | : Mathematics |
ISBN | : 0821820176 |
Lectures on Number Theory is the first of its kind on the subject matter. It covers most of the topics that are standard in a modern first course on number theory, but also includes Dirichlet's famous results on class numbers and primes in arithmetic progressions.
Author | : J. Madore |
Publisher | : Cambridge University Press |
Total Pages | : 381 |
Release | : 1999-06-24 |
Genre | : Mathematics |
ISBN | : 0521659914 |
A thoroughly revised introduction to non-commutative geometry.
Author | : Gerd Fischer |
Publisher | : Springer Science & Business Media |
Total Pages | : 153 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3322802175 |
Ruled varieties are unions of a family of linear spaces. They are objects of algebraic geometry as well as differential geometry, especially if the ruling is developable. This book is an introduction to both aspects, the algebraic and differential one. Starting from very elementary facts, the necessary techniques are developed, especially concerning Grassmannians and fundamental forms in a version suitable for complex projective algebraic geometry. Finally, this leads to recent results on the classification of developable ruled varieties and facts about tangent and secant varieties. Compared to many other topics of algebraic geometry, this is an area easily accessible to a graduate course.