Sieve Methods

Sieve Methods
Author: Heine Halberstam
Publisher: Courier Corporation
Total Pages: 386
Release: 2013-09-26
Genre: Mathematics
ISBN: 0486320804

This text by a noted pair of experts is regarded as the definitive work on sieve methods. It formulates the general sieve problem, explores the theoretical background, and illustrates significant applications. 1974 edition.

An Introduction to Sieve Methods and Their Applications

An Introduction to Sieve Methods and Their Applications
Author: Alina Carmen Cojocaru
Publisher: Cambridge University Press
Total Pages: 250
Release: 2005-12-08
Genre: Mathematics
ISBN: 9780521848169

Rather than focus on the technical details which can obscure the beauty of sieve theory, the authors focus on examples and applications, developing the theory in parallel.

The Development of the Number Field Sieve

The Development of the Number Field Sieve
Author: Arjen K. Lenstra
Publisher: Springer
Total Pages: 138
Release: 2006-11-15
Genre: Mathematics
ISBN: 3540478922

The number field sieve is an algorithm for finding the prime factors of large integers. It depends on algebraic number theory. Proposed by John Pollard in 1988, the method was used in 1990 to factor the ninth Fermat number, a 155-digit integer. The algorithm is most suited to numbers of a special form, but there is a promising variant that applies in general. This volume contains six research papers that describe the operation of the number field sieve, from both theoretical and practical perspectives. Pollard's original manuscript is included. In addition, there is an annotated bibliography of directly related literature.

Sieves in Number Theory

Sieves in Number Theory
Author: George Greaves
Publisher: Springer Science & Business Media
Total Pages: 312
Release: 2013-03-09
Genre: Mathematics
ISBN: 366204658X

This book surveys the current state of the "small" sieve methods developed by Brun, Selberg and later workers. The book is suitable for university graduates making their first acquaintance with the subject, leading them towards the frontiers of modern research and unsolved problems in the subject area.

Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis

Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis
Author: Hugh L. Montgomery
Publisher: American Mathematical Soc.
Total Pages: 242
Release: 1994
Genre: Mathematics
ISBN: 0821807374

This volume contains lectures presented by Hugh L. Montgomery at the NSF-CBMS Regional Conference held at Kansas State University in May 1990. The book focuses on important topics in analytic number theory that involve ideas from harmonic analysis. One particularly valuable aspect of the book is that it collects material that was either unpublished or that had appeared only in the research literature. The book should be a useful resource for harmonic analysts interested in moving into research in analytic number theory. In addition, it is suitable as a textbook in an advanced graduate topics course in number theory.

Opera de Cribro

Opera de Cribro
Author: John B. Friedlander
Publisher: American Mathematical Soc.
Total Pages: 554
Release: 2010-06-22
Genre: Mathematics
ISBN: 0821849700

This is a true masterpiece that will prove to be indispensable to the serious researcher for many years to come. --Enrico Bombieri, Institute for Advanced Study This is a truly comprehensive account of sieves and their applications, by two of the world's greatest authorities. Beginners will find a thorough introduction to the subject, with plenty of helpful motivation. The more practised reader will appreciate the authors' insights into some of the more mysterious parts of the theory, as well as the wealth of new examples. --Roger Heath-Brown, University of Oxford, Fellow of Royal Society This is a comprehensive and up-to-date treatment of sieve methods. The theory of the sieve is developed thoroughly with complete and accessible proofs of the basic theorems. Included is a wide range of applications, both to traditional questions such as those concerning primes, and to areas previously unexplored by sieve methods, such as elliptic curves, points on cubic surfaces and quantum ergodicity. New proofs are given also of some of the central theorems of analytic number theory; these proofs emphasize and take advantage of the applicability of sieve ideas. The book contains numerous comments which provide the reader with insight into the workings of the subject, both as to what the sieve can do and what it cannot do. The authors reveal recent developements by which the parity barrier can be breached, exposing golden nuggets of the subject, previously inaccessible. The variety in the topics covered and in the levels of difficulty encountered makes this a work of value to novices and experts alike, both as an educational tool and a basic reference.

Not Always Buried Deep

Not Always Buried Deep
Author: Paul Pollack
Publisher: American Mathematical Soc.
Total Pages: 322
Release: 2009-10-14
Genre: Mathematics
ISBN: 0821848801

Number theory is one of the few areas of mathematics where problems of substantial interest can be fully described to someone with minimal mathematical background. Solving such problems sometimes requires difficult and deep methods. But this is not a universal phenomenon; many engaging problems can be successfully attacked with little more than one's mathematical bare hands. In this case one says that the problem can be solved in an elementary way. Such elementary methods and the problems to which they apply are the subject of this book. Not Always Buried Deep is designed to be read and enjoyed by those who wish to explore elementary methods in modern number theory. The heart of the book is a thorough introduction to elementary prime number theory, including Dirichlet's theorem on primes in arithmetic progressions, the Brun sieve, and the Erdos-Selberg proof of the prime number theorem. Rather than trying to present a comprehensive treatise, Pollack focuses on topics that are particularly attractive and accessible. Other topics covered include Gauss's theory of cyclotomy and its applications to rational reciprocity laws, Hilbert's solution to Waring's problem, and modern work on perfect numbers. The nature of the material means that little is required in terms of prerequisites: The reader is expected to have prior familiarity with number theory at the level of an undergraduate course and a first course in modern algebra (covering groups, rings, and fields). The exposition is complemented by over 200 exercises and 400 references.