Lectures On Kahler Manifolds
Download Lectures On Kahler Manifolds full books in PDF, epub, and Kindle. Read online free Lectures On Kahler Manifolds ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Werner Ballmann |
Publisher | : European Mathematical Society |
Total Pages | : 190 |
Release | : 2006 |
Genre | : Mathematics |
ISBN | : 9783037190258 |
These notes are based on lectures the author gave at the University of Bonn and the Erwin Schrodinger Institute in Vienna. The aim is to give a thorough introduction to the theory of Kahler manifolds with special emphasis on the differential geometric side of Kahler geometry. The exposition starts with a short discussion of complex manifolds and holomorphic vector bundles and a detailed account of the basic differential geometric properties of Kahler manifolds. The more advanced topics are the cohomology of Kahler manifolds, Calabi conjecture, Gromov's Kahler hyperbolic spaces, and the Kodaira embedding theorem. Some familiarity with global analysis and partial differential equations is assumed, in particular in the part on the Calabi conjecture. There are appendices on Chern-Weil theory, symmetric spaces, and $L^2$-cohomology.
Author | : Andrei Moroianu |
Publisher | : Cambridge University Press |
Total Pages | : 4 |
Release | : 2007-03-29 |
Genre | : Mathematics |
ISBN | : 1139463004 |
Kähler geometry is a beautiful and intriguing area of mathematics, of substantial research interest to both mathematicians and physicists. This self-contained graduate text provides a concise and accessible introduction to the topic. The book begins with a review of basic differential geometry, before moving on to a description of complex manifolds and holomorphic vector bundles. Kähler manifolds are discussed from the point of view of Riemannian geometry, and Hodge and Dolbeault theories are outlined, together with a simple proof of the famous Kähler identities. The final part of the text studies several aspects of compact Kähler manifolds: the Calabi conjecture, Weitzenböck techniques, Calabi–Yau manifolds, and divisors. All sections of the book end with a series of exercises and students and researchers working in the fields of algebraic and differential geometry and theoretical physics will find that the book provides them with a sound understanding of this theory.
Author | : Gang Tian |
Publisher | : Birkhäuser |
Total Pages | : 107 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3034883897 |
There has been fundamental progress in complex differential geometry in the last two decades. For one, The uniformization theory of canonical Kähler metrics has been established in higher dimensions, and many applications have been found, including the use of Calabi-Yau spaces in superstring theory. This monograph gives an introduction to the theory of canonical Kähler metrics on complex manifolds. It also presents some advanced topics not easily found elsewhere.
Author | : Ana Cannas da Silva |
Publisher | : Springer |
Total Pages | : 240 |
Release | : 2004-10-27 |
Genre | : Mathematics |
ISBN | : 354045330X |
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
Author | : Sebastien Boucksom |
Publisher | : Springer |
Total Pages | : 342 |
Release | : 2013-10-02 |
Genre | : Mathematics |
ISBN | : 3319008196 |
This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman’s celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman’s surgeries.
Author | : Jaume Amorós |
Publisher | : American Mathematical Soc. |
Total Pages | : 154 |
Release | : 1996 |
Genre | : Mathematics |
ISBN | : 0821804987 |
This book is an exposition of what is currently known about the fundamental groups of compact Kähler manifolds. This class of groups contains all finite groups and is strictly smaller than the class of all finitely presentable groups. For the first time ever, this book collects together all the results obtained in the last few years which aim to characterize those infinite groups which can arise as fundamental groups of compact Kähler manifolds. Most of these results are negative ones, saying which groups don not arise. The methods and techniques used form an attractive mix of topology, differential and algebraic geometry, and complex analysis. The book would be useful to researchers and graduate students interested in any of these areas, and it could be used as a textbook for an advanced graduate course. One of its outstanding features is a large number of concrete examples. The book contains a number of new results and examples which have not appeared elsewhere, as well as discussions of some important open questions in the field.
Author | : Gábor Székelyhidi |
Publisher | : American Mathematical Soc. |
Total Pages | : 210 |
Release | : 2014-06-19 |
Genre | : Mathematics |
ISBN | : 1470410478 |
A basic problem in differential geometry is to find canonical metrics on manifolds. The best known example of this is the classical uniformization theorem for Riemann surfaces. Extremal metrics were introduced by Calabi as an attempt at finding a higher-dimensional generalization of this result, in the setting of Kähler geometry. This book gives an introduction to the study of extremal Kähler metrics and in particular to the conjectural picture relating the existence of extremal metrics on projective manifolds to the stability of the underlying manifold in the sense of algebraic geometry. The book addresses some of the basic ideas on both the analytic and the algebraic sides of this picture. An overview is given of much of the necessary background material, such as basic Kähler geometry, moment maps, and geometric invariant theory. Beyond the basic definitions and properties of extremal metrics, several highlights of the theory are discussed at a level accessible to graduate students: Yau's theorem on the existence of Kähler-Einstein metrics, the Bergman kernel expansion due to Tian, Donaldson's lower bound for the Calabi energy, and Arezzo-Pacard's existence theorem for constant scalar curvature Kähler metrics on blow-ups.
Author | : Mark Gross |
Publisher | : Springer Science & Business Media |
Total Pages | : 245 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642190049 |
This is an introduction to a very active field of research, on the boundary between mathematics and physics. It is aimed at graduate students and researchers in geometry and string theory. Proofs or sketches are given for many important results. From the reviews: "An excellent introduction to current research in the geometry of Calabi-Yau manifolds, hyper-Kähler manifolds, exceptional holonomy and mirror symmetry....This is an excellent and useful book." --MATHEMATICAL REVIEWS
Author | : Daniel Huybrechts |
Publisher | : Springer Science & Business Media |
Total Pages | : 336 |
Release | : 2005 |
Genre | : Computers |
ISBN | : 9783540212904 |
Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)
Author | : Liviu I. Nicolaescu |
Publisher | : World Scientific |
Total Pages | : 606 |
Release | : 2007 |
Genre | : Mathematics |
ISBN | : 9812708537 |
The goal of this book is to introduce the reader to some of the most frequently used techniques in modern global geometry. Suited to the beginning graduate student willing to specialize in this very challenging field, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology.The book's guiding philosophy is, in the words of Newton, that ?in learning the sciences examples are of more use than precepts?. We support all the new concepts by examples and, whenever possible, we tried to present several facets of the same issue.While we present most of the local aspects of classical differential geometry, the book has a ?global and analytical bias?. We develop many algebraic-topological techniques in the special context of smooth manifolds such as Poincar duality, Thom isomorphism, intersection theory, characteristic classes and the Gauss-;Bonnet theorem.We devoted quite a substantial part of the book to describing the analytic techniques which have played an increasingly important role during the past decades. Thus, the last part of the book discusses elliptic equations, including elliptic Lpand Hlder estimates, Fredholm theory, spectral theory, Hodge theory, and applications of these. The last chapter is an in-depth investigation of a very special, but fundamental class of elliptic operators, namely, the Dirac type operators.The second edition has many new examples and exercises, and an entirely new chapter on classical integral geometry where we describe some mathematical gems which, undeservedly, seem to have disappeared from the contemporary mathematical limelight.