Lie Algebras, Part 2

Lie Algebras, Part 2
Author: E.A. de Kerf
Publisher: Elsevier
Total Pages: 565
Release: 1997-10-30
Genre: Science
ISBN: 0080535461

This is the long awaited follow-up to Lie Algebras, Part I which covered a major part of the theory of Kac-Moody algebras, stressing primarily their mathematical structure. Part II deals mainly with the representations and applications of Lie Algebras and contains many cross references to Part I. The theoretical part largely deals with the representation theory of Lie algebras with a triangular decomposition, of which Kac-Moody algebras and the Virasoro algebra are prime examples. After setting up the general framework of highest weight representations, the book continues to treat topics as the Casimir operator and the Weyl-Kac character formula, which are specific for Kac-Moody algebras. The applications have a wide range. First, the book contains an exposition on the role of finite-dimensional semisimple Lie algebras and their representations in the standard and grand unified models of elementary particle physics. A second application is in the realm of soliton equations and their infinite-dimensional symmetry groups and algebras. The book concludes with a chapter on conformal field theory and the importance of the Virasoro and Kac-Moody algebras therein.

Infinite-dimensional Lie Algebras

Infinite-dimensional Lie Algebras
Author: Minoru Wakimoto
Publisher: American Mathematical Soc.
Total Pages: 332
Release: 2001
Genre: Mathematics
ISBN: 9780821826546

This volume begins with an introduction to the structure of finite-dimensional simple Lie algebras, including the representation of ...... root systems, the Cartan matrix, and a Dynkin diagram of a finite-dimensional simple Lie algebra. Continuing on, the main subjects of the book are the structure (real and imaginary root systems) of and the character formula for Kac-Moody superalgebras, which is explained in a very general setting. Only elementary linear algebra and group theory are assumed. Also covered is modular property and asymptotic behavior of integrable characters of affine Lie algebras. The exposition is self-contained and includes examples. The book can be used in a graduate-level course on the topic.

Lectures On Infinite-dimensional Lie Algebra

Lectures On Infinite-dimensional Lie Algebra
Author: Minoru Wakimoto
Publisher: World Scientific
Total Pages: 456
Release: 2001-10-26
Genre: Mathematics
ISBN: 9814494003

The representation theory of affine Lie algebras has been developed in close connection with various areas of mathematics and mathematical physics in the last two decades. There are three excellent books on it, written by Victor G Kac. This book begins with a survey and review of the material treated in Kac's books. In particular, modular invariance and conformal invariance are explained in more detail. The book then goes further, dealing with some of the recent topics involving the representation theory of affine Lie algebras. Since these topics are important not only in themselves but also in their application to some areas of mathematics and mathematical physics, the book expounds them with examples and detailed calculations.

Infinite Dimensional Groups with Applications

Infinite Dimensional Groups with Applications
Author: Victor Kac
Publisher: Springer Science & Business Media
Total Pages: 406
Release: 1985-10-14
Genre: Mathematics
ISBN: 9780387962160

This volume records most of the talks given at the Conference on Infinite-dimensional Groups held at the Mathematical Sciences Research Institute at Berkeley, California, May 10-May 15, 1984, as a part of the special program on Kac-Moody Lie algebras. The purpose of the conference was to review recent developments of the theory of infinite-dimensional groups and its applications. The present collection concentrates on three very active, interrelated directions of the field: general Kac-Moody groups, gauge groups (especially loop groups) and diffeomorphism groups. I would like to express my thanks to the MSRI for sponsoring the meeting, to Ms. Faye Yeager for excellent typing, to the authors for their manuscripts, and to Springer-Verlag for publishing this volume. V. Kac INFINITE DIMENSIONAL GROUPS WITH APPLICATIONS CONTENTS The Lie Group Structure of M. Adams. T. Ratiu 1 Diffeomorphism Groups and & R. Schmid Invertible Fourier Integral Operators with Applications On Landau-Lifshitz Equation and E. Date 71 Infinite Dimensional Groups Flat Manifolds and Infinite D. S. Freed 83 Dimensional Kahler Geometry Positive-Energy Representations R. Goodman 125 of the Group of Diffeomorphisms of the Circle Instantons and Harmonic Maps M. A. Guest 137 A Coxeter Group Approach to Z. Haddad 157 Schubert Varieties Constructing Groups Associated to V. G. Kac 167 Infinite-Dimensional Lie Algebras I. Kaplansky 217 Harish-Chandra Modules Over the Virasoro Algebra & L. J. Santharoubane 233 Rational Homotopy Theory of Flag S.

Lie Algebras of Finite and Affine Type

Lie Algebras of Finite and Affine Type
Author: Roger William Carter
Publisher: Cambridge University Press
Total Pages: 662
Release: 2005-10-27
Genre: Mathematics
ISBN: 9780521851381

This book provides a thorough but relaxed mathematical treatment of Lie algebras.

Infinite-Dimensional Lie Algebras

Infinite-Dimensional Lie Algebras
Author: Victor G. Kac
Publisher: Cambridge University Press
Total Pages: 428
Release: 1990
Genre: Mathematics
ISBN: 9780521466936

The third, substantially revised edition of a monograph concerned with Kac-Moody algebras, a particular class of infinite-dimensional Lie albegras, and their representations, based on courses given over a number of years at MIT and in Paris.

Lectures on Representation Theory

Lectures on Representation Theory
Author: Jing-Song Huang
Publisher: World Scientific
Total Pages: 206
Release: 1999
Genre: Mathematics
ISBN: 9789810237257

This book is an expanded version of the lectures given at the Nankai Mathematical Summer School in 1997. It provides an introduction to Lie groups, Lie algebras and their representations as well as introduces some directions of current research for graduate students who have little specialized knowledge in representation theory. It only assumes that the reader has a good knowledge of linear algebra and some basic knowledge of abstract algebra.Parts I-III of the book cover the relatively elementary material of representation theory of finite groups, simple Lie algebras and compact Lie groups. These theories are natural continuation of linear algebra. The last chapter of Part III includes some recent results on extension of Weyl's construction to exceptional groups. Part IV covers some advanced material on infinite-dimensional representations of non-compact groups such as the orbit method, minimal representations and dual pair correspondences, which introduces some directions of the current research in representation theory.

Lie Groups, Lie Algebras, and Their Representations

Lie Groups, Lie Algebras, and Their Representations
Author: V.S. Varadarajan
Publisher: Springer Science & Business Media
Total Pages: 444
Release: 2013-04-17
Genre: Mathematics
ISBN: 1461211263

This book has grown out of a set of lecture notes I had prepared for a course on Lie groups in 1966. When I lectured again on the subject in 1972, I revised the notes substantially. It is the revised version that is now appearing in book form. The theory of Lie groups plays a fundamental role in many areas of mathematics. There are a number of books on the subject currently available -most notably those of Chevalley, Jacobson, and Bourbaki-which present various aspects of the theory in great depth. However, 1 feei there is a need for a single book in English which develops both the algebraic and analytic aspects of the theory and which goes into the representation theory of semi simple Lie groups and Lie algebras in detail. This book is an attempt to fiii this need. It is my hope that this book will introduce the aspiring graduate student as well as the nonspecialist mathematician to the fundamental themes of the subject. I have made no attempt to discuss infinite-dimensional representations. This is a very active field, and a proper treatment of it would require another volume (if not more) of this size. However, the reader who wants to take up this theory will find that this book prepares him reasonably well for that task.

An Introduction to Lie Groups and Lie Algebras

An Introduction to Lie Groups and Lie Algebras
Author: Alexander A. Kirillov
Publisher: Cambridge University Press
Total Pages: 237
Release: 2008-07-31
Genre: Mathematics
ISBN: 0521889693

This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.