Lectures On Algebraic Statistics
Download Lectures On Algebraic Statistics full books in PDF, epub, and Kindle. Read online free Lectures On Algebraic Statistics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Mathias Drton |
Publisher | : Springer Science & Business Media |
Total Pages | : 177 |
Release | : 2009-04-25 |
Genre | : Mathematics |
ISBN | : 3764389052 |
How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.
Author | : Günter Harder |
Publisher | : Springer Science & Business Media |
Total Pages | : 301 |
Release | : 2008-08-01 |
Genre | : Mathematics |
ISBN | : 3834895016 |
This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern methods have been anticipated by them.
Author | : L. Pachter |
Publisher | : Cambridge University Press |
Total Pages | : 440 |
Release | : 2005-08-22 |
Genre | : Mathematics |
ISBN | : 9780521857000 |
This book, first published in 2005, offers an introduction to the application of algebraic statistics to computational biology.
Author | : Seth Sullivant |
Publisher | : American Mathematical Soc. |
Total Pages | : 506 |
Release | : 2018-11-19 |
Genre | : Education |
ISBN | : 1470435179 |
Algebraic statistics uses tools from algebraic geometry, commutative algebra, combinatorics, and their computational sides to address problems in statistics and its applications. The starting point for this connection is the observation that many statistical models are semialgebraic sets. The algebra/statistics connection is now over twenty years old, and this book presents the first broad introductory treatment of the subject. Along with background material in probability, algebra, and statistics, this book covers a range of topics in algebraic statistics including algebraic exponential families, likelihood inference, Fisher's exact test, bounds on entries of contingency tables, design of experiments, identifiability of hidden variable models, phylogenetic models, and model selection. With numerous examples, references, and over 150 exercises, this book is suitable for both classroom use and independent study.
Author | : Günter Harder |
Publisher | : Springer Science & Business Media |
Total Pages | : 376 |
Release | : 2011-04-21 |
Genre | : Mathematics |
ISBN | : 3834881597 |
This second volume introduces the concept of shemes, reviews some commutative algebra and introduces projective schemes. The finiteness theorem for coherent sheaves is proved, here again the techniques of homological algebra and sheaf cohomology are needed. In the last two chapters, projective curves over an arbitrary ground field are discussed, the theory of Jacobians is developed, and the existence of the Picard scheme is proved. Finally, the author gives some outlook into further developments- for instance étale cohomology- and states some fundamental theorems.
Author | : John Frank Adams |
Publisher | : University of Chicago Press |
Total Pages | : 384 |
Release | : 1974 |
Genre | : Mathematics |
ISBN | : 0226005240 |
J. Frank Adams, the founder of stable homotopy theory, gave a lecture series at the University of Chicago in 1967, 1970, and 1971, the well-written notes of which are published in this classic in algebraic topology. The three series focused on Novikov's work on operations in complex cobordism, Quillen's work on formal groups and complex cobordism, and stable homotopy and generalized homology. Adams's exposition of the first two topics played a vital role in setting the stage for modern work on periodicity phenomena in stable homotopy theory. His exposition on the third topic occupies the bulk of the book and gives his definitive treatment of the Adams spectral sequence along with many detailed examples and calculations in KU-theory that help give a feel for the subject.
Author | : Siegfried Bosch |
Publisher | : Springer |
Total Pages | : 255 |
Release | : 2014-08-22 |
Genre | : Mathematics |
ISBN | : 3319044176 |
The aim of this work is to offer a concise and self-contained 'lecture-style' introduction to the theory of classical rigid geometry established by John Tate, together with the formal algebraic geometry approach launched by Michel Raynaud. These Lectures are now viewed commonly as an ideal means of learning advanced rigid geometry, regardless of the reader's level of background. Despite its parsimonious style, the presentation illustrates a number of key facts even more extensively than any other previous work. This Lecture Notes Volume is a revised and slightly expanded version of a preprint that appeared in 2005 at the University of Münster's Collaborative Research Center "Geometrical Structures in Mathematics".
Author | : Sumio Watanabe |
Publisher | : Cambridge University Press |
Total Pages | : 295 |
Release | : 2009-08-13 |
Genre | : Computers |
ISBN | : 0521864674 |
Sure to be influential, Watanabe's book lays the foundations for the use of algebraic geometry in statistical learning theory. Many models/machines are singular: mixture models, neural networks, HMMs, Bayesian networks, stochastic context-free grammars are major examples. The theory achieved here underpins accurate estimation techniques in the presence of singularities.
Author | : A. Seidenberg |
Publisher | : Courier Corporation |
Total Pages | : 244 |
Release | : 2012-06-14 |
Genre | : Mathematics |
ISBN | : 0486154734 |
An ideal text for undergraduate courses, this volume takes an axiomatic approach that covers relations between the basic theorems, conics, coordinate systems and linear transformations, quadric surfaces, and the Jordan canonical form. 1962 edition.
Author | : Mauro Beltrametti |
Publisher | : European Mathematical Society |
Total Pages | : 512 |
Release | : 2009 |
Genre | : Mathematics |
ISBN | : 9783037190647 |
This book offers a wide-ranging introduction to algebraic geometry along classical lines. It consists of lectures on topics in classical algebraic geometry, including the basic properties of projective algebraic varieties, linear systems of hypersurfaces, algebraic curves (with special emphasis on rational curves), linear series on algebraic curves, Cremona transformations, rational surfaces, and notable examples of special varieties like the Segre, Grassmann, and Veronese varieties. An integral part and special feature of the presentation is the inclusion of many exercises, not easy to find in the literature and almost all with complete solutions. The text is aimed at students in the last two years of an undergraduate program in mathematics. It contains some rather advanced topics suitable for specialized courses at the advanced undergraduate or beginning graduate level, as well as interesting topics for a senior thesis. The prerequisites have been deliberately limited to basic elements of projective geometry and abstract algebra. Thus, for example, some knowledge of the geometry of subspaces and properties of fields is assumed. The book will be welcomed by teachers and students of algebraic geometry who are seeking a clear and panoramic path leading from the basic facts about linear subspaces, conics and quadrics to a systematic discussion of classical algebraic varieties and the tools needed to study them. The text provides a solid foundation for approaching more advanced and abstract literature.