Lectures On Algebraic Geometry Ii
Download Lectures On Algebraic Geometry Ii full books in PDF, epub, and Kindle. Read online free Lectures On Algebraic Geometry Ii ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Günter Harder |
Publisher | : Springer Science & Business Media |
Total Pages | : 376 |
Release | : 2011-04-21 |
Genre | : Mathematics |
ISBN | : 3834881597 |
This second volume introduces the concept of shemes, reviews some commutative algebra and introduces projective schemes. The finiteness theorem for coherent sheaves is proved, here again the techniques of homological algebra and sheaf cohomology are needed. In the last two chapters, projective curves over an arbitrary ground field are discussed, the theory of Jacobians is developed, and the existence of the Picard scheme is proved. Finally, the author gives some outlook into further developments- for instance étale cohomology- and states some fundamental theorems.
Author | : Günter Harder |
Publisher | : Springer Science & Business Media |
Total Pages | : 301 |
Release | : 2008-08-01 |
Genre | : Mathematics |
ISBN | : 3834895016 |
This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern methods have been anticipated by them.
Author | : David Mumford |
Publisher | : |
Total Pages | : 0 |
Release | : 2015 |
Genre | : Algebraic varieties |
ISBN | : 9789380250809 |
Several generations of students of algebraic geometry have learned the subject from David Mumford's fabled "Red Book" containing notes of his lectures at Harvard University. This book contains what Mumford had intended to be Volume II. It covers the material in the "Red Book" in more depth with several more topics added.
Author | : Arthur Ogus |
Publisher | : Cambridge University Press |
Total Pages | : 559 |
Release | : 2018-11-08 |
Genre | : Mathematics |
ISBN | : 1107187737 |
A self-contained introduction to logarithmic geometry, a key tool for analyzing compactification and degeneration in algebraic geometry.
Author | : David Mumford |
Publisher | : Springer |
Total Pages | : 316 |
Release | : 2004-02-21 |
Genre | : Mathematics |
ISBN | : 3540460217 |
Mumford's famous "Red Book" gives a simple, readable account of the basic objects of algebraic geometry, preserving as much as possible their geometric flavor and integrating this with the tools of commutative algebra. It is aimed at graduates or mathematicians in other fields wishing to quickly learn aboutalgebraic geometry. This new edition includes an appendix that gives an overview of the theory of curves, their moduli spaces and their Jacobians -- one of the most exciting fields within algebraic geometry.
Author | : Shreeram Shankar Abhyankar |
Publisher | : World Scientific |
Total Pages | : 758 |
Release | : 2006 |
Genre | : Mathematics |
ISBN | : 9812568263 |
This book is a timely survey of much of the algebra developed during the last several centuries including its applications to algebraic geometry and its potential use in geometric modeling. The present volume makes an ideal textbook for an abstract algebra course, while the forthcoming sequel. Lectures on Algebra II, will serve as a textbook for a linear algebra course. The author's fondness for algebraic geometry shows up in both volumes, and his recent preoccupation with the applications of group theory to the calculation of Galois groups is evident in the second volume which contains more local rings and more algebraic geometry. Both books are based on the author's lectures at Purdue University over the last few years.
Author | : Siegfried Bosch |
Publisher | : Springer |
Total Pages | : 255 |
Release | : 2014-08-22 |
Genre | : Mathematics |
ISBN | : 3319044176 |
The aim of this work is to offer a concise and self-contained 'lecture-style' introduction to the theory of classical rigid geometry established by John Tate, together with the formal algebraic geometry approach launched by Michel Raynaud. These Lectures are now viewed commonly as an ideal means of learning advanced rigid geometry, regardless of the reader's level of background. Despite its parsimonious style, the presentation illustrates a number of key facts even more extensively than any other previous work. This Lecture Notes Volume is a revised and slightly expanded version of a preprint that appeared in 2005 at the University of Münster's Collaborative Research Center "Geometrical Structures in Mathematics".
Author | : Robin Hartshorne |
Publisher | : Springer Science & Business Media |
Total Pages | : 511 |
Release | : 2013-06-29 |
Genre | : Mathematics |
ISBN | : 1475738498 |
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
Author | : Ulrich Görtz |
Publisher | : Springer Science & Business Media |
Total Pages | : 622 |
Release | : 2010-08-06 |
Genre | : Mathematics |
ISBN | : 3834897221 |
This book introduces the reader to modern algebraic geometry. It presents Grothendieck's technically demanding language of schemes that is the basis of the most important developments in the last fifty years within this area. A systematic treatment and motivation of the theory is emphasized, using concrete examples to illustrate its usefulness. Several examples from the realm of Hilbert modular surfaces and of determinantal varieties are used methodically to discuss the covered techniques. Thus the reader experiences that the further development of the theory yields an ever better understanding of these fascinating objects. The text is complemented by many exercises that serve to check the comprehension of the text, treat further examples, or give an outlook on further results. The volume at hand is an introduction to schemes. To get startet, it requires only basic knowledge in abstract algebra and topology. Essential facts from commutative algebra are assembled in an appendix. It will be complemented by a second volume on the cohomology of schemes.
Author | : Kenji Ueno |
Publisher | : American Mathematical Soc. |
Total Pages | : 196 |
Release | : 1999 |
Genre | : Mathematics |
ISBN | : 9780821813577 |
Algebraic geometry is built upon two fundamental notions: schemes and sheaves. The theory of schemes was explained in Algebraic Geometry 1: From Algebraic Varieties to Schemes. In this volume, the author turns to the theory of sheaves and their cohomology. A sheaf is a way of keeping track of local information defined on a topological space, such as the local holomorphic functions on a complex manifold or the local sections of a vector bundle. To study schemes, it is useful to study the sheaves defined on them, especially the coherent and quasicoherent sheaves.