A Course in Model Theory

A Course in Model Theory
Author: Katrin Tent
Publisher: Cambridge University Press
Total Pages: 259
Release: 2012-03-08
Genre: Mathematics
ISBN: 052176324X

Concise introduction to current topics in model theory, including simple and stable theories.

Model Theory of Stochastic Processes

Model Theory of Stochastic Processes
Author: Sergio Fajardo
Publisher: Cambridge University Press
Total Pages: 150
Release: 2017-03-30
Genre: Mathematics
ISBN: 1108619266

Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the fourteenth publication in the Lecture Notes in Logic series, Fajardo and Keisler present new research combining probability theory and mathematical logic. It is a general study of stochastic processes using ideas from model theory, a key central theme being the question, 'When are two stochastic processes alike?' The authors assume some background in nonstandard analysis, but prior knowledge of model theory and advanced logic is not necessary. This volume will appeal to mathematicians willing to explore new developments with an open mind.

Model Theory of Fields

Model Theory of Fields
Author: David Marker
Publisher: CRC Press
Total Pages: 172
Release: 2005-12-15
Genre: Mathematics
ISBN: 1439864411

The model theory of fields is a fascinating subject stretching from Tarski's work on the decidability of the theories of the real and complex fields to Hrushovksi's recent proof of the Mordell-Lang conjecture for function fields. This volume provides an insightful introduction to this active area, concentrating on connections to stability theory.

Model Theory in Algebra, Analysis and Arithmetic

Model Theory in Algebra, Analysis and Arithmetic
Author: Lou van den Dries
Publisher: Springer
Total Pages: 201
Release: 2014-09-20
Genre: Mathematics
ISBN: 3642549365

Presenting recent developments and applications, the book focuses on four main topics in current model theory: 1) the model theory of valued fields; 2) undecidability in arithmetic; 3) NIP theories; and 4) the model theory of real and complex exponentiation. Young researchers in model theory will particularly benefit from the book, as will more senior researchers in other branches of mathematics.

Model Theory and Topoi

Model Theory and Topoi
Author: F.W. Lawvere
Publisher: Springer
Total Pages: 352
Release: 2006-11-15
Genre: Mathematics
ISBN: 3540374957

A Collection of Lectures by Variuos Authors

Model Theory and Algebraic Geometry

Model Theory and Algebraic Geometry
Author: Elisabeth Bouscaren
Publisher: Springer
Total Pages: 223
Release: 2009-03-14
Genre: Mathematics
ISBN: 3540685219

This introduction to the recent exciting developments in the applications of model theory to algebraic geometry, illustrated by E. Hrushovski's model-theoretic proof of the geometric Mordell-Lang Conjecture starts from very basic background and works up to the detailed exposition of Hrushovski's proof, explaining the necessary tools and results from stability theory on the way. The first chapter is an informal introduction to model theory itself, making the book accessible (with a little effort) to readers with no previous knowledge of model theory. The authors have collaborated closely to achieve a coherent and self- contained presentation, whereby the completeness of exposition of the chapters varies according to the existence of other good references, but comments and examples are always provided to give the reader some intuitive understanding of the subject.

A Shorter Model Theory

A Shorter Model Theory
Author: Wilfrid Hodges
Publisher: Cambridge University Press
Total Pages: 322
Release: 1997-04-10
Genre: Mathematics
ISBN: 9780521587136

This is an up-to-date textbook of model theory taking the reader from first definitions to Morley's theorem and the elementary parts of stability theory. Besides standard results such as the compactness and omitting types theorems, it also describes various links with algebra, including the Skolem-Tarski method of quantifier elimination, model completeness, automorphism groups and omega-categoricity, ultraproducts, O-minimality and structures of finite Morley rank. The material on back-and-forth equivalences, interpretations and zero-one laws can serve as an introduction to applications of model theory in computer science. Each chapter finishes with a brief commentary on the literature and suggestions for further reading. This book will benefit graduate students with an interest in model theory.

Model Theory and Modules

Model Theory and Modules
Author: Mike Prest
Publisher: Cambridge University Press
Total Pages: 402
Release: 1988-02-25
Genre: Mathematics
ISBN: 0521348331

In recent years the interplay between model theory and other branches of mathematics has led to many deep and intriguing results. In this, the first book on the topic, the theme is the interplay between model theory and the theory of modules. The book is intended to be a self-contained introduction to the subject and introduces the requisite model theory and module theory as it is needed. Dr Prest develops the basic ideas concerning what can be said about modules using the information which may be expressed in a first-order language. Later chapters discuss stability-theoretic aspects of modules, and structure and classification theorems over various types of rings and for certain classes of modules. Both algebraists and logicians will enjoy this account of an area in which algebra and model theory interact in a significant way. The book includes numerous examples and exercises and consequently will make an ideal introduction for graduate students coming to this subject for the first time.

Lectures on Invariant Theory

Lectures on Invariant Theory
Author: Igor Dolgachev
Publisher: Cambridge University Press
Total Pages: 244
Release: 2003-08-07
Genre: Mathematics
ISBN: 9780521525480

The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.