Learning Ipython For Interactive Computing And Data Visualization
Download Learning Ipython For Interactive Computing And Data Visualization full books in PDF, epub, and Kindle. Read online free Learning Ipython For Interactive Computing And Data Visualization ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Cyrille Rossant |
Publisher | : Packt Publishing Ltd |
Total Pages | : 201 |
Release | : 2015-10-21 |
Genre | : Computers |
ISBN | : 1783986999 |
Get started with Python for data analysis and numerical computing in the Jupyter notebook About This Book Learn the basics of Python in the Jupyter Notebook Analyze and visualize data with pandas, NumPy, matplotlib, and seaborn Perform highly-efficient numerical computations with Numba, Cython, and ipyparallel Who This Book Is For This book targets students, teachers, researchers, engineers, analysts, journalists, hobbyists, and all data enthusiasts who are interested in analyzing and visualizing real-world datasets. If you are new to programming and data analysis, this book is exactly for you. If you're already familiar with another language or analysis software, you will also appreciate this introduction to the Python data analysis platform. Finally, there are more technical topics for advanced readers. No prior experience is required; this book contains everything you need to know. What You Will Learn Install Anaconda and code in Python in the Jupyter Notebook Load and explore datasets interactively Perform complex data manipulations effectively with pandas Create engaging data visualizations with matplotlib and seaborn Simulate mathematical models with NumPy Visualize and process images interactively in the Jupyter Notebook with scikit-image Accelerate your code with Numba, Cython, and IPython.parallel Extend the Notebook interface with HTML, JavaScript, and D3 In Detail Python is a user-friendly and powerful programming language. IPython offers a convenient interface to the language and its analysis libraries, while the Jupyter Notebook is a rich environment well-adapted to data science and visualization. Together, these open source tools are widely used by beginners and experts around the world, and in a huge variety of fields and endeavors. This book is a beginner-friendly guide to the Python data analysis platform. After an introduction to the Python language, IPython, and the Jupyter Notebook, you will learn how to analyze and visualize data on real-world examples, how to create graphical user interfaces for image processing in the Notebook, and how to perform fast numerical computations for scientific simulations with NumPy, Numba, Cython, and ipyparallel. By the end of this book, you will be able to perform in-depth analyses of all sorts of data. Style and approach This is a hands-on beginner-friendly guide to analyze and visualize data on real-world examples with Python and the Jupyter Notebook.
Author | : Cyrille Rossant |
Publisher | : Packt Publishing Ltd |
Total Pages | : 899 |
Release | : 2014-09-25 |
Genre | : Computers |
ISBN | : 178328482X |
Intended to anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, hobbyists... Basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.
Author | : Wes McKinney |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 553 |
Release | : 2017-09-25 |
Genre | : Computers |
ISBN | : 1491957611 |
Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Author | : Jake VanderPlas |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 609 |
Release | : 2016-11-21 |
Genre | : Computers |
ISBN | : 1491912138 |
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Author | : Dan Toomey |
Publisher | : Packt Publishing Ltd |
Total Pages | : 229 |
Release | : 2018-04-30 |
Genre | : Computers |
ISBN | : 1788839749 |
Leverage the power of the popular Jupyter notebooks to simplify your data science tasks without any hassle Key Features Create and share interactive documents with live code, text and visualizations Integrate popular programming languages such as Python, R, Julia, Scala with Jupyter Develop your widgets and interactive dashboards with these innovative recipes Book Description Jupyter has garnered a strong interest in the data science community of late, as it makes common data processing and analysis tasks much simpler. This book is for data science professionals who want to master various tasks related to Jupyter to create efficient, easy-to-share, scientific applications. The book starts with recipes on installing and running the Jupyter Notebook system on various platforms and configuring the various packages that can be used with it. You will then see how you can implement different programming languages and frameworks, such as Python, R, Julia, JavaScript, Scala, and Spark on your Jupyter Notebook. This book contains intuitive recipes on building interactive widgets to manipulate and visualize data in real time, sharing your code, creating a multi-user environment, and organizing your notebook. You will then get hands-on experience with Jupyter Labs, microservices, and deploying them on the web. By the end of this book, you will have taken your knowledge of Jupyter to the next level to perform all key tasks associated with it. What you will learn Install Jupyter and configure engines for Python, R, Scala and more Access and retrieve data on Jupyter Notebooks Create interactive visualizations and dashboards for different scenarios Convert and share your dynamic codes using HTML, JavaScript, Docker, and more Create custom user data interactions using various Jupyter widgets Manage user authentication and file permissions Interact with Big Data to perform numerical computing and statistical modeling Get familiar with Jupyter's next-gen user interface - JupyterLab Who this book is for This cookbook is for data science professionals, developers, technical data analysts, and programmers who want to execute technical coding, visualize output, and do scientific computing in one tool. Prior understanding of data science concepts will be helpful, but not mandatory, to use this book.
Author | : Scott Murray |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 472 |
Release | : 2017-08-03 |
Genre | : Computers |
ISBN | : 1491921323 |
Author Scott Murray teaches you the fundamental concepts and methods of D3, a JavaScript library that lets you express data visually in a web browser.
Author | : Andreas C. Müller |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 429 |
Release | : 2016-09-26 |
Genre | : Computers |
ISBN | : 1449369898 |
Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You’ll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book. With this book, you’ll learn: Fundamental concepts and applications of machine learning Advantages and shortcomings of widely used machine learning algorithms How to represent data processed by machine learning, including which data aspects to focus on Advanced methods for model evaluation and parameter tuning The concept of pipelines for chaining models and encapsulating your workflow Methods for working with text data, including text-specific processing techniques Suggestions for improving your machine learning and data science skills
Author | : Dan Toomey |
Publisher | : Packt Publishing Ltd |
Total Pages | : 230 |
Release | : 2016-11-30 |
Genre | : Computers |
ISBN | : 1785889451 |
Learn how to write code, mathematics, graphics, and output, all in a single document, as well as in a web browser using Project Jupyter About This Book Learn to write, execute, and comment your live code and formulae all under one roof using this unique guide This one-stop solution on Project Jupyter will teach you everything you need to know to perform scientific computation with ease This easy-to-follow, highly practical guide lets you forget your worries in scientific application development by leveraging big data tools such as Apache Spark, Python, R etc Who This Book Is For This book caters to all developers, students, or educators who want to execute code, see output, and comment all in the same document, in the browser. Data science professionals will also find this book very useful to perform technical and scientific computing in a graphical, agile manner. What You Will Learn Install and run the Jupyter Notebook system on your machine Implement programming languages such as R, Python, Julia, and JavaScript with Jupyter Notebook Use interactive widgets to manipulate and visualize data in real time Start sharing your Notebook with colleagues Invite your colleagues to work with you in the same Notebook Organize your Notebook using Jupyter namespaces Access big data in Jupyter In Detail Jupyter Notebook is a web-based environment that enables interactive computing in notebook documents. It allows you to create and share documents that contain live code, equations, visualizations, and explanatory text. The Jupyter Notebook system is extensively used in domains such as data cleaning and transformation, numerical simulation, statistical modeling, machine learning, and much more. This book starts with a detailed overview of the Jupyter Notebook system and its installation in different environments. Next we'll help you will learn to integrate Jupyter system with different programming languages such as R, Python, JavaScript, and Julia and explore the various versions and packages that are compatible with the Notebook system. Moving ahead, you master interactive widgets, namespaces, and working with Jupyter in a multiuser mode. Towards the end, you will use Jupyter with a big data set and will apply all the functionalities learned throughout the book. Style and approach This comprehensive practical guide will teach you how to work with the Jupyter Notebook system. It demonstrates the integration of various programming languages with Jupyter Notebook through hands-on examples in every chapter.
Author | : Hans Petter Langtangen |
Publisher | : Springer |
Total Pages | : 942 |
Release | : 2016-07-28 |
Genre | : Computers |
ISBN | : 3662498871 |
The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015
Author | : Jen Stirrup |
Publisher | : Packt Publishing Ltd |
Total Pages | : 645 |
Release | : 2016-08-31 |
Genre | : Computers |
ISBN | : 1787120503 |
Illustrate your data in a more interactive way by implementing data visualization principles and creating visual stories using Tableau About This Book Use data visualization principles to help you to design dashboards that enlighten and support business decisions Integrate your data to provide mashed-up dashboards Connect to various data sources and understand what data is appropriate for Tableau Public Understand chart types and when to use specific chart types with different types of data Who This Book Is For Data scientists who have just started using Tableau and want to build on the skills using practical examples. Familiarity with previous versions of Tableau will be helpful, but not necessary. What You Will Learn Customize your designs to meet the needs of your business using Tableau Use Tableau to prototype, develop, and deploy the final dashboard Create filled maps and use any shape file Discover features of Tableau Public, from basic to advanced Build geographic maps to bring context to data Create filters and actions to allow greater interactivity to Tableau Public visualizations and dashboards Publish and embed Tableau visualizations and dashboards in articles In Detail With increasing interest for data visualization in the media, businesses are looking to create effective dashboards that engage as well as communicate the truth of data. Tableau makes data accessible to everyone, and is a great way of sharing enterprise dashboards across the business. Tableau is a revolutionary toolkit that lets you simply and effectively create high-quality data visualizations. This course starts with making you familiar with its features and enable you to develop and enhance your dashboard skills, starting with an overview of what dashboard is, followed by how you can collect data using various mathematical formulas. Next, you'll learn to filter and group data, as well as how to use various functions to present the data in an appealing and accurate way. In the first module, you will learn how to use the key advanced string functions to play with data and images. You will be walked through the various features of Tableau including dual axes, scatterplot matrices, heat maps, and sizing.In the second module, you'll start with getting your data into Tableau, move onto generating progressively complex graphics, and end with the finishing touches and packaging your work for distribution. This module is filled with practical examples to help you create filled maps, use custom markers, add slider selectors, and create dashboards. You will learn how to manipulate data in various ways by applying various filters, logic, and calculating various aggregate measures. Finally, in the third module, you learn about Tableau Public using which allows readers to explore data associations in multiple-sourced public data, and uses state-of-the-art dashboard and chart graphics to immerse the users in an interactive experience. In this module, the readers can quickly gain confidence in understanding and expanding their visualization, creation knowledge, and quickly create interesting, interactive data visualizations to bring a richness and vibrancy to complex articles. The course provides a great overview for beginner to intermediate Tableau users, and covers the creation of data visualizations of varying complexities. Style and approach The approach will be a combined perspective, wherein we start by performing some basic recipes and move on to some advanced ones. Finally, we perform some advanced analytics and create appealing and insightful data stories using Tableau Public in a step-by-step manner.