Learn Ai Assisted Python Programming Second Edition
Download Learn Ai Assisted Python Programming Second Edition full books in PDF, epub, and Kindle. Read online free Learn Ai Assisted Python Programming Second Edition ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Leo Porter |
Publisher | : Simon and Schuster |
Total Pages | : 334 |
Release | : 2024-10-29 |
Genre | : Computers |
ISBN | : 1638355770 |
See how an AI assistant can bring your ideas to life immediately! Once, to be a programmer you had to write every line of code yourself. Now tools like GitHub Copilot can instantly generate working programs based on your description in plain English. An instant bestseller, Learn AI-Assisted Python Programming has taught thousands of aspiring programmers how to write Python the easy way—with the help of AI. It’s perfect for beginners, or anyone who’s struggled with the steep learning curve of traditional programming. In Learn AI-Assisted Python Programming, Second Edition you’ll learn how to: • Write fun and useful Python applications—no programming experience required! • Use the GitHub Copilot AI coding assistant to create Python programs • Write prompts that tell Copilot exactly what to do • Read Python code and understand what it does • Test your programs to make sure they work the way you want them to • Fix code with prompt engineering or human tweaks • Apply Python creatively to help out on the job AI moves fast, and so the new edition of Learn AI-Assisted Python Programming, Second Edition is fully updated to take advantage of the latest models and AI coding tools. Written by two esteemed computer science university professors, it teaches you everything you need to start programming Python in an AI-first world. You’ll learn skills you can use to create working apps for data analysis, automating tedious tasks, and even video games. Plus, in this new edition, you’ll find groundbreaking techniques for breaking down big software projects into smaller tasks AI can easily achieve. Foreword by Beth Simon. About the technology The way people write computer programs has changed forever. Using GitHub Copilot, you describe in plain English what you want your program to do, and the AI generates it instantly. About the book This book shows you how to create and improve Python programs using AI—even if you’ve never written a line of computer code before. Spend less time on the slow, low-level programming details and instead learn how an AI assistant can bring your ideas to life immediately. As you go, you’ll even learn enough of the Python language to understand and improve what your AI assistant creates. What's inside • Prompts for working code • Tweak code manually and with AI help • AI-test your programs • Let AI handle tedious details About the reader If you can move files around on your computer and install new programs, you can learn to write useful software! About the author Dr. Leo Porter is a Teaching Professor at UC San Diego. Dr. Daniel Zingaro is an Associate Teaching Professor at the University of Toronto. The technical editor on this book was Peter Morgan. Table of Contents 1 Introducing AI-assisted programming with GitHub Copilot 2 Getting started with Copilot 3 Designing functions 4 Reading Python code: Part 1 5 Reading Python code: Part 2 6 Testing and prompt engineering 7 Problem decomposition 8 Debugging and better understanding your code 9 Automating tedious tasks 10 Making some games 11 Creating an authorship identification program 12 Future directions
Author | : Leo Porter |
Publisher | : Simon and Schuster |
Total Pages | : 461 |
Release | : 2024-01-09 |
Genre | : Computers |
ISBN | : 1638353859 |
Writing computer programs in Python just got a lot easier! Use AI-assisted coding tools like GitHub Copilot and ChatGPT to turn your ideas into applications faster than ever. AI has changed the way we write computer programs. With tools like Copilot and ChatGPT, you can describe what you want in plain English, and watch your AI assistant generate the code right before your eyes. It’s perfect for beginners, or anyone who’s struggled with the steep learning curve of traditional programming. In Learn AI-Assisted Python Programming: With GitHub Copilot and ChatGPT you’ll learn how to: Write fun and useful Python applications—no programming experience required! Use the Copilot AI coding assistant to create Python programs Write prompts that tell Copilot exactly what to do Read Python code and understand what it does Test your programs to make sure they work the way you want them to Fix code with prompt engineering or human tweaks Apply Python creatively to help out on the job Learn AI-Assisted Python Programming: With GitHub Copilot and ChatGPT is a hands-on beginner’s guide that is written by two esteemed computer science university professors. It teaches you everything you need to start programming Python in an AI-first world. You’ll hit the ground running, writing prompts that tell your AI-assistant exactly what you want your programs to do. Along the way, you’ll pick up the essentials of Python programming and practice the higher-level thinking you’ll need to create working apps for data analysis, automating tedious tasks, and even video games. Foreword by Beth Simon, Ph.D. About the technology The way people write computer programs has changed forever. Using GitHub Copilot, you describe in plain English what you want your program to do, and the AI generates it instantly. About the book This book shows you how to create and improve Python programs using AI—even if you’ve never written a line of computer code before. Spend less time on the slow, low-level programming details and instead learn how an AI assistant can bring your ideas to life immediately. As you go, you’ll even learn enough of the Python language to understand and improve what your AI assistant creates. What's inside Prompts for working code Tweak code manually and with AI help AI-test your programs Let AI handle tedious details About the reader If you can move files around on your computer and install new programs, you can learn to write useful software! About the author Dr. Leo Porter is a Teaching Professor at UC San Diego. Dr. Daniel Zingaro is an Associate Teaching Professor at the University of Toronto. The technical editor on this book was Peter Morgan. Table of Contents 1 Introducing AI-assisted programming with Copilot 2 Getting started with Copilot 3 Designing functions 4 Reading Python code – Part 1 5 Reading Python Code – Part 2 6 Testing and prompt engineering 7 Problem decomposition 8 Debugging and better understanding your code 9 Automating tedious tasks 10 Making some games 11 Future directions
Author | : Alberto Artasanchez |
Publisher | : Packt Publishing Ltd |
Total Pages | : 619 |
Release | : 2020-01-31 |
Genre | : Computers |
ISBN | : 1839216077 |
New edition of the bestselling guide to artificial intelligence with Python, updated to Python 3.x, with seven new chapters that cover RNNs, AI and Big Data, fundamental use cases, chatbots, and more. Key FeaturesCompletely updated and revised to Python 3.xNew chapters for AI on the cloud, recurrent neural networks, deep learning models, and feature selection and engineeringLearn more about deep learning algorithms, machine learning data pipelines, and chatbotsBook Description Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent apps and create your own applications. This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data. Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques. What you will learnUnderstand what artificial intelligence, machine learning, and data science areExplore the most common artificial intelligence use casesLearn how to build a machine learning pipelineAssimilate the basics of feature selection and feature engineeringIdentify the differences between supervised and unsupervised learningDiscover the most recent advances and tools offered for AI development in the cloudDevelop automatic speech recognition systems and chatbotsApply AI algorithms to time series dataWho this book is for The intended audience for this book is Python developers who want to build real-world Artificial Intelligence applications. Basic Python programming experience and awareness of machine learning concepts and techniques is mandatory.
Author | : John Whitington |
Publisher | : Simon and Schuster |
Total Pages | : 174 |
Release | : 2024-06-06 |
Genre | : Computers |
ISBN | : 1638354383 |
Learn about computer science by exploring the fascinating journey it took to make this book! How Computers Make Books introduces what’s wonderful about computer science by showing how computers have transformed the art of publishing books. Author and publishing software developer John Whitington reveals the elegant computer science solutions invented to solve big publishing challenges. In How Computers Make Books you’ll discover: How human descriptions are translated into computer programs How a computer can understand document formatting How a program decides where to print ink on a page Why computer science is so interesting to computer scientists, and why it might interest you …and much more! How do computers represent all the different languages and letters used by humans? How do we compress a book’s worth of complex information so it can be transferred in seconds? And what exactly is a computer program? This book answers all those questions by telling the story of how it was created! About the technology Computers are part of every step in creating a book, from capturing the author’s words as a digital document to controlling how the ink gets onto the paper. How Computers Make Books introduces basic computer science concepts like file formatting, transfer, and storage, computer programming, and task automation by guiding you through the modern digital printing process. About the book This book takes you on a journey from the plain white page, weaving through typesetting, making gray images from black ink, electronic file formats, and more. It makes computer science come alive as you see how every word, illustration, and page has its own story. You’ll even learn to write your own simple programs and discover hands-on what’s so intoxicating about computer science. What's inside How human descriptions are translated into computer programs How a digital computer thinks about print documents How a program decides where to print ink on a page How the history of typesetting shows up in modern books About the reader For the curious-but-clueless about computer science—and anyone interested in how computers make books! About the author John Whitington is the founder of a company that builds software for electronic document processing. He has studied and taught Computer Science at Queens’ College, Cambridge. Technical editor on this book was Bojan Stojanovic. Table of Contents 1 Putting marks on paper 2 Letter forms 3 Storing words 4 Looking and finding 5 Typing it in 6 Saving space 7 The sums behind the screen 8 Gray areas 9 A typeface 10 Words to paragraphs 11 Out into the world
Author | : Prateek Joshi |
Publisher | : Packt Publishing Ltd |
Total Pages | : 437 |
Release | : 2017-01-27 |
Genre | : Computers |
ISBN | : 1786469677 |
Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
Author | : Daniel Zingaro |
Publisher | : No Starch Press |
Total Pages | : 392 |
Release | : 2021-06-29 |
Genre | : Computers |
ISBN | : 1718501331 |
Learn to Code by Solving Problems is a practical introduction to programming using Python. It uses coding-competition challenges to teach you the mechanics of coding and how to think like a savvy programmer. Computers are capable of solving almost any problem when given the right instructions. That’s where programming comes in. This beginner’s book will have you writing Python programs right away. You’ll solve interesting problems drawn from real coding competitions and build your programming skills as you go. Every chapter presents problems from coding challenge websites, where online judges test your solutions and provide targeted feedback. As you practice using core Python features, functions, and techniques, you’ll develop a clear understanding of data structures, algorithms, and other programming basics. Bonus exercises invite you to explore new concepts on your own, and multiple-choice questions encourage you to think about how each piece of code works. You’ll learn how to: Run Python code, work with strings, and use variables Write programs that make decisions Make code more efficient with while and for loops Use Python sets, lists, and dictionaries to organize, sort, and search data Design programs using functions and top-down design Create complete-search algorithms and use Big O notation to design more efficient code By the end of the book, you’ll not only be proficient in Python, but you’ll also understand how to think through problems and tackle them with code. Programming languages come and go, but this book gives you the lasting foundation you need to start thinking like a programmer.
Author | : Laurence Moroney |
Publisher | : O'Reilly Media |
Total Pages | : 393 |
Release | : 2020-10-01 |
Genre | : Computers |
ISBN | : 1492078166 |
If you're looking to make a career move from programmer to AI specialist, this is the ideal place to start. Based on Laurence Moroney's extremely successful AI courses, this introductory book provides a hands-on, code-first approach to help you build confidence while you learn key topics. You'll understand how to implement the most common scenarios in machine learning, such as computer vision, natural language processing (NLP), and sequence modeling for web, mobile, cloud, and embedded runtimes. Most books on machine learning begin with a daunting amount of advanced math. This guide is built on practical lessons that let you work directly with the code. You'll learn: How to build models with TensorFlow using skills that employers desire The basics of machine learning by working with code samples How to implement computer vision, including feature detection in images How to use NLP to tokenize and sequence words and sentences Methods for embedding models in Android and iOS How to serve models over the web and in the cloud with TensorFlow Serving
Author | : Roberto Pieraccini |
Publisher | : MIT Press |
Total Pages | : 290 |
Release | : 2021-09-07 |
Genre | : Computers |
ISBN | : 0262542552 |
An accessible explanation of the technologies that enable such popular voice-interactive applications as Alexa, Siri, and Google Assistant. Have you talked to a machine lately? Asked Alexa to play a song, asked Siri to call a friend, asked Google Assistant to make a shopping list? This volume in the MIT Press Essential Knowledge series offers a nontechnical and accessible explanation of the technologies that enable these popular devices. Roberto Pieraccini, drawing on more than thirty years of experience at companies including Bell Labs, IBM, and Google, describes the developments in such fields as artificial intelligence, machine learning, speech recognition, and natural language understanding that allow us to outsource tasks to our ubiquitous virtual assistants. Pieraccini describes the software components that enable spoken communication between humans and computers, and explains why it's so difficult to build machines that understand humans. He explains speech recognition technology; problems in extracting meaning from utterances in order to execute a request; language and speech generation; the dialog manager module; and interactions with social assistants and robots. Finally, he considers the next big challenge in the development of virtual assistants: building in more intelligence--enabling them to do more than communicate in natural language and endowing them with the capacity to know us better, predict our needs more accurately, and perform complex tasks with ease.
Author | : Marcello La Rocca |
Publisher | : Simon and Schuster |
Total Pages | : 278 |
Release | : 2024-08-06 |
Genre | : Computers |
ISBN | : 1633436993 |
Don’t be perplexed by data structures! This fun, friendly, and fully illustrated guide makes it easy to learn useful data structures you’ll put to work every day. Grokking Data Structures makes it a breeze to learn the most useful day-to-day data structures. You’ll follow a steady learning path from absolute basics to advanced concepts, all illustrated with fun examples, engaging industry stories, and hundreds of graphics and cartoons. In Grokking Data Structures you’ll learn how to: • Understand the most important and widely used data structures • Identify use cases where data structures make the biggest difference • Pick the best data structure solution for a coding challenge • Understand the tradeoffs of data structures and avoid catastrophes • Implement basic data collections like arrays, linked lists, stacks, and priority queues • Use trees and binary search trees (BSTs) to organize data • Use graphs to model relationships and learn about complex data • Efficiently search by key using hash tables and hashing functions • Reason about time and memory requirements of operations on data structures Grokking Data Structures carefully guides you from the most basic data structures like arrays or linked lists all the way to powerful structures like graphs. It’s perfect for beginners, and you won’t need anything more than high school math to get started. Each data structure you encounter comes with its own complete Python implementation so you can start experimenting with what you learn right away. Foreword by Daniel Zingaro. Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications. About the technology Data structures are vital for shaping and handling your data organization. They’re also an important part of most IT job interviews! Whether you’re new to data structures or just dusting off what you learned in school, this book will get you up to speed fast with no advanced math, abstract theory, or complicated proofs. About the book Grokking Data Structures introduces common and useful data structures that every developer needs to know. Real-world examples show you how data structures are used in practice, from making your searches faster to handling triage in an emergency room. You’ll love the fun cartoons, insightful stories, and useful Python code samples that make data structures come alive. And unlike jargon-laden academic texts, this book is easy-to-read and practical. What's inside • Fast searches using hash tables • Trees and binary search trees (BSTs) to organize data • Use graphs to model complex data • The best data structures for a coding challenge About the reader For readers who know the basics of Python. A perfect companion to Grokking Algorithms! About the author Marcello La Rocca is a research scientist and a full-stack engineer. He has contributed to large-scale web applications and machine learning infrastructure at Twitter, Microsoft, and Apple. The technical editor on this book was Beau Carnes. Table of Contents 1 Introducing data structures: Why you should learn about data structures 2 Static arrays: Building your first data structure 3 Sorted arrays: Searching faster, at a price 4 Big-O notation: A framework for measuring algorithm efficiency 5 Dynamic arrays: Handling dynamically sized datasets 6 Linked lists: A flexible dynamic collection 7 Abstract data types: Designing the simplest container—the bag 8 Stacks: Piling up data before processing it 9 Queues: Keeping information in the same order as it arrives 10 Priority queues and heaps: Handling data according to its priority 11 Binary search trees: A balanced container 12 Dictionaries and hash tables: How to build and use associative arrays 13 Graphs: Learning how to model complex relationships in data
Author | : Stefan Jansen |
Publisher | : Packt Publishing Ltd |
Total Pages | : 822 |
Release | : 2020-07-31 |
Genre | : Business & Economics |
ISBN | : 1839216786 |
Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.