Lattices & Boolean Algebras: First Concepts

Lattices & Boolean Algebras: First Concepts
Author: Khanna, Vijay K.
Publisher: Vikas Publishing House
Total Pages: 172
Release: 2004-12
Genre: Mathematics
ISBN: 9788125916536

This book is primarily designed for senior UG students wishing to pursue a course in Lattices/ Boolean Algebra, and those desirous of using lattice-theoretic concepts in their higher studies. Theoretical discussions amply illustrated by numerous examples and worked-out problems. Hints and solutions to select exercises added to the text as further help.

Introduction to Lattices and Order

Introduction to Lattices and Order
Author: B. A. Davey
Publisher: Cambridge University Press
Total Pages: 316
Release: 2002-04-18
Genre: Mathematics
ISBN: 1107717523

This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is of commercial value in social science. Classroom experience has led to numerous pedagogical improvements and many new exercises have been added. As before, exposure to elementary abstract algebra and the notation of set theory are the only prerequisites, making the book suitable for advanced undergraduates and beginning graduate students. It will also be a valuable resource for anyone who meets ordered structures.

Lattice Theory

Lattice Theory
Author: George Gratzer
Publisher: Courier Corporation
Total Pages: 242
Release: 2009-01-01
Genre: Mathematics
ISBN: 048647173X

This outstanding text is written in clear language and enhanced with many exercises, diagrams, and proofs. It discusses historical developments and future directions and provides an extensive bibliography and references. 1971 edition.

Introduction to Lattice Algebra

Introduction to Lattice Algebra
Author: Gerhard X. Ritter
Publisher: CRC Press
Total Pages: 292
Release: 2021-08-23
Genre: Mathematics
ISBN: 1000412601

Lattice theory extends into virtually every branch of mathematics, ranging from measure theory and convex geometry to probability theory and topology. A more recent development has been the rapid escalation of employing lattice theory for various applications outside the domain of pure mathematics. These applications range from electronic communication theory and gate array devices that implement Boolean logic to artificial intelligence and computer science in general. Introduction to Lattice Algebra: With Applications in AI, Pattern Recognition, Image Analysis, and Biomimetic Neural Networks lays emphasis on two subjects, the first being lattice algebra and the second the practical applications of that algebra. This textbook is intended to be used for a special topics course in artificial intelligence with a focus on pattern recognition, multispectral image analysis, and biomimetic artificial neural networks. The book is self-contained and – depending on the student’s major – can be used for a senior undergraduate level or first-year graduate level course. The book is also an ideal self-study guide for researchers and professionals in the above-mentioned disciplines. Features Filled with instructive examples and exercises to help build understanding Suitable for researchers, professionals and students, both in mathematics and computer science Contains numerous exercises.

Abstract Algebra

Abstract Algebra
Author: Thomas Judson
Publisher: Orthogonal Publishing L3c
Total Pages: 0
Release: 2023-08-11
Genre:
ISBN: 9781944325190

Abstract Algebra: Theory and Applications is an open-source textbook that is designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner. Its strengths include a wide range of exercises, both computational and theoretical, plus many non-trivial applications. The first half of the book presents group theory, through the Sylow theorems, with enough material for a semester-long course. The second half is suitable for a second semester and presents rings, integral domains, Boolean algebras, vector spaces, and fields, concluding with Galois Theory.

Lattices and Ordered Algebraic Structures

Lattices and Ordered Algebraic Structures
Author: T.S. Blyth
Publisher: Springer Science & Business Media
Total Pages: 311
Release: 2005-04-18
Genre: Mathematics
ISBN: 1852339055

"The text can serve as an introduction to fundamentals in the respective areas from a residuated-maps perspective and with an eye on coordinatization. The historical notes that are interspersed are also worth mentioning....The exposition is thorough and all proofs that the reviewer checked were highly polished....Overall, the book is a well-done introduction from a distinct point of view and with exposure to the author’s research expertise." --MATHEMATICAL REVIEWS

General Lattice Theory

General Lattice Theory
Author: G. Grätzer
Publisher: Birkhäuser
Total Pages: 392
Release: 2012-12-06
Genre: Science
ISBN: 3034876335

In the first half of the nineteenth century, George Boole's attempt to formalize propositional logic led to the concept of Boolean algebras. While investigating the axiomatics of Boolean algebras at the end of the nineteenth century, Charles S. Peirce and Ernst Schröder found it useful to introduce the lattice concept. Independently, Richard Dedekind's research on ideals of algebraic numbers led to the same discov ery. In fact, Dedekind also introduced modularity, a weakened form of distri butivity. Although some of the early results of these mathematicians and of Edward V. Huntington are very elegant and far from trivial, they did not attract the attention of the mathematical community. It was Garrett Birkhoff's work in the mid-thirties that started the general develop ment of lattice theory. In a brilliant series of papers he demonstrated the importance of lattice theory and showed that it provides a unifying framework for hitherto unrelated developments in many mathematical disciplines. Birkhoff himself, Valere Glivenko, Karl Menger, John von Neumann, Oystein Ore, and others had developed enough of this new field for Birkhoff to attempt to "seIl" it to the general mathematical community, which he did with astonishing success in the first edition of his Lattice Theory. The further development of the subject matter can best be followed by com paring the first, second, and third editions of his book (G. Birkhoff [1940], [1948], and [1967]).

General Lattice Theory

General Lattice Theory
Author: George Grätzer
Publisher: Springer Science & Business Media
Total Pages: 688
Release: 2002-11-21
Genre: Mathematics
ISBN: 9783764369965

"Grätzer’s 'General Lattice Theory' has become the lattice theorist’s bible. Now we have the second edition, in which the old testament is augmented by a new testament. The new testament gospel is provided by leading and acknowledged experts in their fields. This is an excellent and engaging second edition that will long remain a standard reference." --MATHEMATICAL REVIEWS

Axioms For Lattices And Boolean Algebras

Axioms For Lattices And Boolean Algebras
Author: R Padmanabhan
Publisher: World Scientific
Total Pages: 229
Release: 2008-08-11
Genre: Mathematics
ISBN: 9814469963

The importance of equational axioms emerged initially with the axiomatic approach to Boolean algebras, groups, and rings, and later in lattices. This unique research monograph systematically presents minimal equational axiom-systems for various lattice-related algebras, regardless of whether they are given in terms of “join and meet” or other types of operations such as ternary operations. Each of the axiom-systems is coded in a handy way so that it is easy to follow the natural connection among the various axioms and to understand how to combine them to form new axiom systems.A new topic in this book is the characterization of Boolean algebras within the class of all uniquely complemented lattices. Here, the celebrated problem of E V Huntington is addressed, which — according to G Gratzer, a leading expert in modern lattice theory — is one of the two problems that shaped a century of research in lattice theory. Among other things, it is shown that there are infinitely many non-modular lattice identities that force a uniquely complemented lattice to be Boolean, thus providing several new axiom systems for Boolean algebras within the class of all uniquely complemented lattices. Finally, a few related lines of research are sketched, in the form of appendices, including one by Dr Willian McCune of the University of New Mexico, on applications of modern theorem-proving to the equational theory of lattices.