Simultaneous Localization and Mapping

Simultaneous Localization and Mapping
Author: Zhan Wang
Publisher: World Scientific
Total Pages: 208
Release: 2011
Genre: Computers
ISBN: 981435032X

Simultaneous localization and mapping (SLAM) is a process where an autonomous vehicle builds a map of an unknown environment while concurrently generating an estimate for its location. This book is concerned with computationally efficient solutions to the large scale SLAM problems using exactly sparse Extended Information Filters (EIF). The invaluable book also provides a comprehensive theoretical analysis of the properties of the information matrix in EIF-based algorithms for SLAM. Three exactly sparse information filters for SLAM are described in detail, together with two efficient and exact methods for recovering the state vector and the covariance matrix. Proposed algorithms are extensively evaluated both in simulation and through experiments.

Robotics and Cognitive Approaches to Spatial Mapping

Robotics and Cognitive Approaches to Spatial Mapping
Author: Margaret E. Jefferies
Publisher: Springer Science & Business Media
Total Pages: 657
Release: 2008-01-10
Genre: Technology & Engineering
ISBN: 3540753869

This important work is an attempt to synthesize two areas that need to be treated in tandem. The book brings together the fields of robot spatial mapping and cognitive spatial mapping, which share some common core problems. One would expect some cross-fertilization of research between the two areas to have occurred, yet this has begun only recently. There are now signs that some synthesis is happening, so this work is a timely one for students and engineers in robotics.

Large-Scale Simultaneous Localization and Mapping

Large-Scale Simultaneous Localization and Mapping
Author: Janusz Będkowski
Publisher: Springer Nature
Total Pages: 315
Release: 2022-06-13
Genre: Technology & Engineering
ISBN: 9811919720

This book is dedicated for engineers and researchers who would like to increase the knowledge in area of mobile mapping systems. Therefore, the flow of the derived information is divided into subproblems corresponding to certain mobile mapping data and related observations’ equations. The proposed methodology is not fulfilling all SLAM aspects evident in the literature, but it is based on the experience within the context of the pragmatic and realistic applications. Thus, it can be supportive information for those who are familiar with SLAM and would like to have broader overview in the subject. The novelty is a complete and interdisciplinary methodology for large-scale mobile mapping applications. The contribution is a set of programming examples available as supportive complementary material for this book. All observation equations are implemented, and for each, the programming example is provided. The programming examples are simple C++ implementations that can be elaborated by students or engineers; therefore, the experience in coding is not mandatory. Moreover, since the implementation does not require many additional external programming libraries, it can be easily integrated with any mobile mapping framework. Finally, the purpose of this book is to collect all necessary observation equations and solvers to build computational system capable providing large-scale maps.

Simultaneous Localization and Mapping for Mobile Robots: Introduction and Methods

Simultaneous Localization and Mapping for Mobile Robots: Introduction and Methods
Author: Fernández-Madrigal, Juan-Antonio
Publisher: IGI Global
Total Pages: 497
Release: 2012-09-30
Genre: Technology & Engineering
ISBN: 1466621052

As mobile robots become more common in general knowledge and practices, as opposed to simply in research labs, there is an increased need for the introduction and methods to Simultaneous Localization and Mapping (SLAM) and its techniques and concepts related to robotics. Simultaneous Localization and Mapping for Mobile Robots: Introduction and Methods investigates the complexities of the theory of probabilistic localization and mapping of mobile robots as well as providing the most current and concrete developments. This reference source aims to be useful for practitioners, graduate and postgraduate students, and active researchers alike.

Introduction to Visual SLAM

Introduction to Visual SLAM
Author: Xiang Gao
Publisher: Springer Nature
Total Pages: 386
Release: 2021-09-28
Genre: Technology & Engineering
ISBN: 9811649391

This book offers a systematic and comprehensive introduction to the visual simultaneous localization and mapping (vSLAM) technology, which is a fundamental and essential component for many applications in robotics, wearable devices, and autonomous driving vehicles. The book starts from very basic mathematic background knowledge such as 3D rigid body geometry, the pinhole camera projection model, and nonlinear optimization techniques, before introducing readers to traditional computer vision topics like feature matching, optical flow, and bundle adjustment. The book employs a light writing style, instead of the rigorous yet dry approach that is common in academic literature. In addition, it includes a wealth of executable source code with increasing difficulty to help readers understand and use the practical techniques. The book can be used as a textbook for senior undergraduate or graduate students, or as reference material for researchers and engineers in related areas.

FastSLAM

FastSLAM
Author: Michael Montemerlo
Publisher: Springer
Total Pages: 129
Release: 2007-04-27
Genre: Technology & Engineering
ISBN: 3540464026

This monograph describes a new family of algorithms for the simultaneous localization and mapping (SLAM) problem in robotics, called FastSLAM. The FastSLAM-type algorithms have enabled robots to acquire maps of unprecedented size and accuracy, in a number of robot application domains and have been successfully applied in different dynamic environments, including a solution to the problem of people tracking.

Vision Based Autonomous Robot Navigation

Vision Based Autonomous Robot Navigation
Author: Amitava Chatterjee
Publisher: Springer
Total Pages: 235
Release: 2012-10-13
Genre: Technology & Engineering
ISBN: 3642339654

This monograph is devoted to the theory and development of autonomous navigation of mobile robots using computer vision based sensing mechanism. The conventional robot navigation systems, utilizing traditional sensors like ultrasonic, IR, GPS, laser sensors etc., suffer several drawbacks related to either the physical limitations of the sensor or incur high cost. Vision sensing has emerged as a popular alternative where cameras can be used to reduce the overall cost, maintaining high degree of intelligence, flexibility and robustness. This book includes a detailed description of several new approaches for real life vision based autonomous navigation algorithms and SLAM. It presents the concept of how subgoal based goal-driven navigation can be carried out using vision sensing. The development concept of vision based robots for path/line tracking using fuzzy logic is presented, as well as how a low-cost robot can be indigenously developed in the laboratory with microcontroller based sensor systems. The book describes successful implementation of integration of low-cost, external peripherals, with off-the-shelf procured robots. An important highlight of the book is that it presents a detailed, step-by-step sample demonstration of how vision-based navigation modules can be actually implemented in real life, under 32-bit Windows environment. The book also discusses the concept of implementing vision based SLAM employing a two camera based system.

Algorithmic Foundations of Robotics V

Algorithmic Foundations of Robotics V
Author: Jean-Daniel Boissonnat
Publisher: Springer Science & Business Media
Total Pages: 600
Release: 2003-09-11
Genre: Technology & Engineering
ISBN: 9783540404767

Selected contributions to the Workshop WAFR 2002, held December 15-17, 2002, Nice, France. This fifth biannual Workshop on Algorithmic Foundations of Robotics focuses on algorithmic issues related to robotics and automation. The design and analysis of robot algorithms raises fundamental questions in computer science, computational geometry, mechanical modeling, operations research, control theory, and associated fields. The highly selective program highlights significant new results such as algorithmic models and complexity bounds. The validation of algorithms, design concepts, or techniques is the common thread running through this focused collection.

Simultaneous Localization and Mapping

Simultaneous Localization and Mapping
Author: Zhan Wang
Publisher: World Scientific
Total Pages: 208
Release: 2011
Genre: Computers
ISBN: 9814350311

Simultaneous localization and mapping (SLAM) is a process where an autonomous vehicle builds a map of an unknown environment while concurrently generating an estimate for its location. This book is concerned with computationally efficient solutions to the large scale SLAM problems using exactly sparse Extended Information Filters (EIF). The invaluable book also provides a comprehensive theoretical analysis of the properties of the information matrix in EIF-based algorithms for SLAM. Three exactly sparse information filters for SLAM are described in detail, together with two efficient and exact methods for recovering the state vector and the covariance matrix. Proposed algorithms are extensively evaluated both in simulation and through experiments.

Switchable Constraints for Robust Simultaneous Localization and Mapping and Satellite-Based Localization

Switchable Constraints for Robust Simultaneous Localization and Mapping and Satellite-Based Localization
Author: Niko Sünderhauf
Publisher: Springer Nature
Total Pages: 190
Release: 2023-04-07
Genre: Technology & Engineering
ISBN: 3031240170

Simultaneous Localization and Mapping (SLAM) has been a long-standing research problem in robotics. It describes the problem of a robot mapping an unknown environment, while simultaneously localizing in it with the help of the incomplete map. This book describes a technique called Switchable Constraints.Switchable Constraints help to increase the robustness of SLAM against data association errors and in particular against false positive loop closure detections. Such false positive loop closure detections can occur when the robot erroneously assumes it re-observed a landmark it has already mapped or when the appearance of the observed surroundings is very similar to the appearance of other places in the map. Ambiguous observations and appearances are very common in human-made environments such as office floors or suburban streets, making robustness against spurious observations a key challenge in SLAM. The book summarizes the foundations of factor graph-based SLAM techniques. It explains the problem of data association errors before introducing the novel idea of Switchable Constraints. We present a mathematical derivation and probabilistic interpretation of Switchable Constraints along with evaluations on different datasets. The book shows that Switchable Constraints are applicable beyond SLAM problems and demonstrates the efficacy of this technique to improve the quality of satellite-based localization in urban environments, where multipath and non-line-of-sight situations are common error sources.