Lagrangian Lie Subalgebroids Of The Canonical Symplectic Lie Algebroid
Download Lagrangian Lie Subalgebroids Of The Canonical Symplectic Lie Algebroid full books in PDF, epub, and Kindle. Read online free Lagrangian Lie Subalgebroids Of The Canonical Symplectic Lie Algebroid ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Camille Laurent-Gengoux |
Publisher | : Springer Science & Business Media |
Total Pages | : 470 |
Release | : 2012-08-27 |
Genre | : Mathematics |
ISBN | : 3642310907 |
Poisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical artifact, but a key element which, unsolicited, comes along with the problem that is investigated, and its delicate properties are decisive for the solution to the problem in nearly all cases. Poisson Structures is the first book that offers a comprehensive introduction to the theory, as well as an overview of the different aspects of Poisson structures. The first part covers solid foundations, the central part consists of a detailed exposition of the different known types of Poisson structures and of the (usually mathematical) contexts in which they appear, and the final part is devoted to the two main applications of Poisson structures (integrable systems and deformation quantization). The clear structure of the book makes it adequate for readers who come across Poisson structures in their research or for graduate students or advanced researchers who are interested in an introduction to the many facets and applications of Poisson structures.
Author | : Sean Bates |
Publisher | : American Mathematical Soc. |
Total Pages | : 150 |
Release | : 1997 |
Genre | : Mathematics |
ISBN | : 9780821807989 |
These notes are based on a course entitled ``Symplectic Geometry and Geometric Quantization'' taught by Alan Weinstein at the University of California, Berkeley (fall 1992) and at the Centre Emile Borel (spring 1994). The only prerequisite for the course needed is a knowledge of the basic notions from the theory of differentiable manifolds (differential forms, vector fields, transversality, etc.). The aim is to give students an introduction to the ideas of microlocal analysis and the related symplectic geometry, with an emphasis on the role these ideas play in formalizing the transition between the mathematics of classical dynamics (hamiltonian flows on symplectic manifolds) and quantum mechanics (unitary flows on Hilbert spaces). These notes are meant to function as a guide to the literature. The authors refer to other sources for many details that are omitted and can be bypassed on a first reading.
Author | : Michael Gekhtman |
Publisher | : American Mathematical Soc. |
Total Pages | : 264 |
Release | : 2010 |
Genre | : Mathematics |
ISBN | : 0821849727 |
The first book devoted to cluster algebras, this work contains chapters on Poisson geometry and Schubert varieties; an introduction to cluster algebras and their main properties; and geometric aspects of the cluster algebra theory, in particular on its relations to Poisson geometry and to the theory of integrable systems.
Author | : Victor M. Buchstaber |
Publisher | : American Mathematical Soc. |
Total Pages | : 534 |
Release | : 2015-07-15 |
Genre | : Mathematics |
ISBN | : 147042214X |
This book is about toric topology, a new area of mathematics that emerged at the end of the 1990s on the border of equivariant topology, algebraic and symplectic geometry, combinatorics, and commutative algebra. It has quickly grown into a very active area with many links to other areas of mathematics, and continues to attract experts from different fields. The key players in toric topology are moment-angle manifolds, a class of manifolds with torus actions defined in combinatorial terms. Construction of moment-angle manifolds relates to combinatorial geometry and algebraic geometry of toric varieties via the notion of a quasitoric manifold. Discovery of remarkable geometric structures on moment-angle manifolds led to important connections with classical and modern areas of symplectic, Lagrangian, and non-Kaehler complex geometry. A related categorical construction of moment-angle complexes and polyhedral products provides for a universal framework for many fundamental constructions of homotopical topology. The study of polyhedral products is now evolving into a separate subject of homotopy theory. A new perspective on torus actions has also contributed to the development of classical areas of algebraic topology, such as complex cobordism. This book includes many open problems and is addressed to experts interested in new ideas linking all the subjects involved, as well as to graduate students and young researchers ready to enter this beautiful new area.
Author | : Daniele Angella |
Publisher | : Springer |
Total Pages | : 263 |
Release | : 2017-10-12 |
Genre | : Mathematics |
ISBN | : 331962914X |
This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.
Author | : Masaki Kashiwara |
Publisher | : Cambridge University Press |
Total Pages | : 119 |
Release | : 2016-05-26 |
Genre | : Mathematics |
ISBN | : 1316613453 |
A unified treatment of the Riemann-Hilbert correspondence for (not necessarily regular) holonomic D-modules using indsheaves.
Author | : Andrei Moroianu |
Publisher | : Cambridge University Press |
Total Pages | : 4 |
Release | : 2007-03-29 |
Genre | : Mathematics |
ISBN | : 1139463004 |
Kähler geometry is a beautiful and intriguing area of mathematics, of substantial research interest to both mathematicians and physicists. This self-contained graduate text provides a concise and accessible introduction to the topic. The book begins with a review of basic differential geometry, before moving on to a description of complex manifolds and holomorphic vector bundles. Kähler manifolds are discussed from the point of view of Riemannian geometry, and Hodge and Dolbeault theories are outlined, together with a simple proof of the famous Kähler identities. The final part of the text studies several aspects of compact Kähler manifolds: the Calabi conjecture, Weitzenböck techniques, Calabi–Yau manifolds, and divisors. All sections of the book end with a series of exercises and students and researchers working in the fields of algebraic and differential geometry and theoretical physics will find that the book provides them with a sound understanding of this theory.
Author | : Ivan Kolar |
Publisher | : Springer Science & Business Media |
Total Pages | : 440 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 3662029502 |
The aim of this work is threefold: First it should be a monographical work on natural bundles and natural op erators in differential geometry. This is a field which every differential geometer has met several times, but which is not treated in detail in one place. Let us explain a little, what we mean by naturality. Exterior derivative commutes with the pullback of differential forms. In the background of this statement are the following general concepts. The vector bundle A kT* M is in fact the value of a functor, which associates a bundle over M to each manifold M and a vector bundle homomorphism over f to each local diffeomorphism f between manifolds of the same dimension. This is a simple example of the concept of a natural bundle. The fact that exterior derivative d transforms sections of A kT* M into sections of A k+1T* M for every manifold M can be expressed by saying that d is an operator from A kT* M into A k+1T* M.
Author | : Jerrold E. Marsden |
Publisher | : Springer |
Total Pages | : 527 |
Release | : 2007-06-05 |
Genre | : Mathematics |
ISBN | : 3540724702 |
This volume provides a detailed account of the theory of symplectic reduction by stages, along with numerous illustrations of the theory. It gives special emphasis to group extensions, including a detailed discussion of the Euclidean group, the oscillator group, the Bott-Virasoro group and other groups of matrices. The volume also provides ample background theory on symplectic reduction and cotangent bundle reduction.
Author | : Louis H. Kauffman |
Publisher | : Princeton University Press |
Total Pages | : 500 |
Release | : 1987 |
Genre | : Mathematics |
ISBN | : 9780691084350 |
On Knots is a journey through the theory of knots, starting from the simplest combinatorial ideas--ideas arising from the representation of weaving patterns. From this beginning, topological invariants are constructed directly: first linking numbers, then the Conway polynomial and skein theory. This paves the way for later discussion of the recently discovered Jones and generalized polynomials. The central chapter, Chapter Six, is a miscellany of topics and recreations. Here the reader will find the quaternions and the belt trick, a devilish rope trick, Alhambra mosaics, Fibonacci trees, the topology of DNA, and the author's geometric interpretation of the generalized Jones Polynomial. Then come branched covering spaces, the Alexander polynomial, signature theorems, the work of Casson and Gordon on slice knots, and a chapter on knots and algebraic singularities.The book concludes with an appendix about generalized polynomials.