Knowledge Representation A Complete Guide 2020 Edition
Download Knowledge Representation A Complete Guide 2020 Edition full books in PDF, epub, and Kindle. Read online free Knowledge Representation A Complete Guide 2020 Edition ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Michael Gelfond |
Publisher | : Cambridge University Press |
Total Pages | : 363 |
Release | : 2014-03-10 |
Genre | : Computers |
ISBN | : 1107782872 |
Knowledge representation and reasoning is the foundation of artificial intelligence, declarative programming, and the design of knowledge-intensive software systems capable of performing intelligent tasks. Using logical and probabilistic formalisms based on answer set programming (ASP) and action languages, this book shows how knowledge-intensive systems can be given knowledge about the world and how it can be used to solve non-trivial computational problems. The authors maintain a balance between mathematical analysis and practical design of intelligent agents. All the concepts, such as answering queries, planning, diagnostics, and probabilistic reasoning, are illustrated by programs of ASP. The text can be used for AI-related undergraduate and graduate classes and by researchers who would like to learn more about ASP and knowledge representation.
Author | : Michael K. Bergman |
Publisher | : Springer |
Total Pages | : 462 |
Release | : 2018-12-12 |
Genre | : Computers |
ISBN | : 3319980920 |
This major work on knowledge representation is based on the writings of Charles S. Peirce, a logician, scientist, and philosopher of the first rank at the beginning of the 20th century. This book follows Peirce's practical guidelines and universal categories in a structured approach to knowledge representation that captures differences in events, entities, relations, attributes, types, and concepts. Besides the ability to capture meaning and context, the Peircean approach is also well-suited to machine learning and knowledge-based artificial intelligence. Peirce is a founder of pragmatism, the uniquely American philosophy. Knowledge representation is shorthand for how to represent human symbolic information and knowledge to computers to solve complex questions. KR applications range from semantic technologies and knowledge management and machine learning to information integration, data interoperability, and natural language understanding. Knowledge representation is an essential foundation for knowledge-based AI. This book is structured into five parts. The first and last parts are bookends that first set the context and background and conclude with practical applications. The three main parts that are the meat of the approach first address the terminologies and grammar of knowledge representation, then building blocks for KR systems, and then design, build, test, and best practices in putting a system together. Throughout, the book refers to and leverages the open source KBpedia knowledge graph and its public knowledge bases, including Wikipedia and Wikidata. KBpedia is a ready baseline for users to bridge from and expand for their own domain needs and applications. It is built from the ground up to reflect Peircean principles. This book is one of timeless, practical guidelines for how to think about KR and to design knowledge management (KM) systems. The book is grounded bedrock for enterprise information and knowledge managers who are contemplating a new knowledge initiative. This book is an essential addition to theory and practice for KR and semantic technology and AI researchers and practitioners, who will benefit from Peirce's profound understanding of meaning and context.
Author | : Zhiyuan Liu |
Publisher | : Springer Nature |
Total Pages | : 319 |
Release | : 2020-07-03 |
Genre | : Computers |
ISBN | : 9811555737 |
This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.
Author | : Elton John |
Publisher | : Hal Leonard Corporation |
Total Pages | : 241 |
Release | : 1993-06-01 |
Genre | : Music |
ISBN | : 1458493636 |
(Keyboard Recorded Versions). This terrific collection features 20 of Elton John's best songs: Bennie and the Jets * Candle in the Wind * Crocodile Rock * Daniel * Don't Go Breaking My Heart * Goodbye Yellow Brick Road * Honky Cat * Rocket Man * Tiny Dancer * and more.
Author | : N. Gupta |
Publisher | : Mercury Learning and Information |
Total Pages | : 332 |
Release | : 2020-02-18 |
Genre | : Computers |
ISBN | : 1683925157 |
Designed as a self-teaching introduction to the fundamental concepts of artificial intelligence, the book begins with its history, the Turing test, and early applications. Later chapters cover the basics of searching, game playing, and knowledge representation. Expert systems and machine learning are covered in detail, followed by separate programming chapters on Prolog and Python. The concluding chapter on artificial intelligence machines and robotics is comprehensive with numerous modern applications. Features: Covers an introduction to concepts related to AI, including searching processes, knowledge representation, machine learning, expert systems, programming, and robotics Includes separate chapters on Prolog and Python to introduce basic programming techniques in AI
Author | : Ian Goodfellow |
Publisher | : MIT Press |
Total Pages | : 801 |
Release | : 2016-11-10 |
Genre | : Computers |
ISBN | : 0262337371 |
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Author | : Frank van Harmelen |
Publisher | : Elsevier |
Total Pages | : 1035 |
Release | : 2008-01-08 |
Genre | : Computers |
ISBN | : 0080557023 |
Handbook of Knowledge Representation describes the essential foundations of Knowledge Representation, which lies at the core of Artificial Intelligence (AI). The book provides an up-to-date review of twenty-five key topics in knowledge representation, written by the leaders of each field. It includes a tutorial background and cutting-edge developments, as well as applications of Knowledge Representation in a variety of AI systems. This handbook is organized into three parts. Part I deals with general methods in Knowledge Representation and reasoning and covers such topics as classical logic in Knowledge Representation; satisfiability solvers; description logics; constraint programming; conceptual graphs; nonmonotonic reasoning; model-based problem solving; and Bayesian networks. Part II focuses on classes of knowledge and specialized representations, with chapters on temporal representation and reasoning; spatial and physical reasoning; reasoning about knowledge and belief; temporal action logics; and nonmonotonic causal logic. Part III discusses Knowledge Representation in applications such as question answering; the semantic web; automated planning; cognitive robotics; multi-agent systems; and knowledge engineering. This book is an essential resource for graduate students, researchers, and practitioners in knowledge representation and AI. * Make your computer smarter* Handle qualitative and uncertain information* Improve computational tractability to solve your problems easily
Author | : William L. William L. Hamilton |
Publisher | : Springer Nature |
Total Pages | : 141 |
Release | : 2022-06-01 |
Genre | : Computers |
ISBN | : 3031015886 |
Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.
Author | : Daller, Daller |
Publisher | : Wolters Kluwer |
Total Pages | : 1218 |
Release | : 2019-12-16 |
Genre | : Law |
ISBN | : 1543806902 |
There is a great wealth of diversity in the business tort laws of all fifty states and the District of Columbia. The new 2020 Edition of Business Torts: A Fifty-State Guide helps you quickly assess the merits and pitfalls of litigation in any given jurisdiction allowing you to make the best decisions for your clients. In addition to the very significant differences in the statutes of limitation, other significant differences include: Some states have not recognized a cause of action for negligent interference with an economic advantage. Negligent misrepresentation in one state is limited to claims against persons in the business of supplying information to others. One state recognizes a cause of action for "strict responsibility misrepresentation." Another state recognizes claims of "prima facie tort" for wrongs that do not fit into traditional tort categories. And these are only a few examples of the more significant differences. Previous Edtion: Business Torts: A Fifty State Guide, 2019 Edition, ISBN 9781454899600
Author | : Rhazali, Yassine |
Publisher | : IGI Global |
Total Pages | : 287 |
Release | : 2020-09-18 |
Genre | : Computers |
ISBN | : 1799836630 |
An integral element of software engineering is model engineering. They both endeavor to minimize cost, time, and risks with quality software. As such, model engineering is a highly useful field that demands in-depth research on the most current approaches and techniques. Only by understanding the most up-to-date research can these methods reach their fullest potential. Advancements in Model-Driven Architecture in Software Engineering is an essential publication that prepares readers to exercise modeling and model transformation and covers state-of-the-art research and developments on various approaches for methodologies and platforms of model-driven architecture, applications and software development of model-driven architecture, modeling languages, and modeling tools. Highlighting a broad range of topics including cloud computing, service-oriented architectures, and modeling languages, this book is ideally designed for engineers, programmers, software designers, entrepreneurs, researchers, academicians, and students.