Multilinguality in Knowledge Graphs

Multilinguality in Knowledge Graphs
Author: L.-A. Kaffee
Publisher: IOS Press
Total Pages: 218
Release: 2023-11-14
Genre: Computers
ISBN: 1643684558

Content on the web is predominantly written in English, making it inaccessible to those who only speak other languages. Knowledge graphs can store multilingual information, facilitate the creation of multilingual applications, and make content accessible to multiple language communities. This book, Multilinguality in Knowledge Graphs, presents studies which assess and improve the state of labels and languages in knowledge graphs and the application of multilingual information. The author proposes ways of using multilingual knowledge graphs to reduce the gaps in coverage between languages, and the book explores the current state of language distribution in knowledge graphs by developing a framework based on existing standards, frameworks, and guidelines to measure label and language distribution in knowledge graphs. Applying this framework to a dataset representing the web of data, and to Wikidata, both a lack of labeling on the web and a bias towards a small set of languages were found. The book explores how a knowledge of labels and languages can be used in the domain of answering questions, and demonstrates how the framework can be applied to the task of ranking and selecting knowledge graphs for a set of user questions. Transliteration and translation of knowledge graph labels and aliases are also covered, as is the automatic classification of labels into one or the other to train a model for each task. The book provides a wide range of information on working with data and knowledge graphs in less-resourced languages.

Knowledge Graphs: Semantics, Machine Learning, and Languages

Knowledge Graphs: Semantics, Machine Learning, and Languages
Author: M. Acosta
Publisher: IOS Press
Total Pages: 262
Release: 2023-10-03
Genre: Computers
ISBN: 1643684256

Semantic computing is an integral part of modern technology, an essential component of fields as diverse as artificial intelligence, data science, knowledge discovery and management, big data analytics, e-commerce, enterprise search, technical documentation, document management, business intelligence, and enterprise vocabulary management. This book presents the proceedings of SEMANTICS 2023, the 19th International Conference on Semantic Systems, held in Leipzig, Germany, from 20 to 22 September 2023. The conference is a pivotal event for those professionals and researchers actively engaged in harnessing the power of semantic computing, an opportunity to increase their understanding of the subject’s transformative potential while confronting its practical limitations. Attendees include information managers, IT architects, software engineers, and researchers from a broad spectrum of organizations, including research facilities, non-profit entities, public administrations, and the world's largest corporations. For this year’s conference a total of 54 submissions were received in response to a call for papers. These were subjected to a rigorous, double-blind review process, with at least three independent reviews conducted for each submission. The 16 papers included here were ultimately accepted for presentation, with an acceptance rate of 29.6%. Areas covered include novel research challenges in areas such as data science, machine learning, logic programming, content engineering, social computing, and the Semantic Web. The book provides an up-to-date overview, which will be of interest to all those wishing to stay abreast of emerging trends and themes within the vast field of semantic computing.

Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges

Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges
Author: I. Tiddi
Publisher: IOS Press
Total Pages: 314
Release: 2020-05-06
Genre: Computers
ISBN: 1643680811

The latest advances in Artificial Intelligence and (deep) Machine Learning in particular revealed a major drawback of modern intelligent systems, namely the inability to explain their decisions in a way that humans can easily understand. While eXplainable AI rapidly became an active area of research in response to this need for improved understandability and trustworthiness, the field of Knowledge Representation and Reasoning (KRR) has on the other hand a long-standing tradition in managing information in a symbolic, human-understandable form. This book provides the first comprehensive collection of research contributions on the role of knowledge graphs for eXplainable AI (KG4XAI), and the papers included here present academic and industrial research focused on the theory, methods and implementations of AI systems that use structured knowledge to generate reliable explanations. Introductory material on knowledge graphs is included for those readers with only a minimal background in the field, as well as specific chapters devoted to advanced methods, applications and case-studies that use knowledge graphs as a part of knowledge-based, explainable systems (KBX-systems). The final chapters explore current challenges and future research directions in the area of knowledge graphs for eXplainable AI. The book not only provides a scholarly, state-of-the-art overview of research in this subject area, but also fosters the hybrid combination of symbolic and subsymbolic AI methods, and will be of interest to all those working in the field.

Mastering Large Language Models

Mastering Large Language Models
Author: Sanket Subhash Khandare
Publisher: BPB Publications
Total Pages: 465
Release: 2024-03-12
Genre: Computers
ISBN: 9355519656

Do not just talk AI, build it: Your guide to LLM application development KEY FEATURES ● Explore NLP basics and LLM fundamentals, including essentials, challenges, and model types. ● Learn data handling and pre-processing techniques for efficient data management. ● Understand neural networks overview, including NN basics, RNNs, CNNs, and transformers. ● Strategies and examples for harnessing LLMs. DESCRIPTION Transform your business landscape with the formidable prowess of large language models (LLMs). The book provides you with practical insights, guiding you through conceiving, designing, and implementing impactful LLM-driven applications. This book explores NLP fundamentals like applications, evolution, components and language models. It teaches data pre-processing, neural networks , and specific architectures like RNNs, CNNs, and transformers. It tackles training challenges, advanced techniques such as GANs, meta-learning, and introduces top LLM models like GPT-3 and BERT. It also covers prompt engineering. Finally, it showcases LLM applications and emphasizes responsible development and deployment. With this book as your compass, you will navigate the ever-evolving landscape of LLM technology, staying ahead of the curve with the latest advancements and industry best practices. WHAT YOU WILL LEARN ● Grasp fundamentals of natural language processing (NLP) applications. ● Explore advanced architectures like transformers and their applications. ● Master techniques for training large language models effectively. ● Implement advanced strategies, such as meta-learning and self-supervised learning. ● Learn practical steps to build custom language model applications. WHO THIS BOOK IS FOR This book is tailored for those aiming to master large language models, including seasoned researchers, data scientists, developers, and practitioners in natural language processing (NLP). TABLE OF CONTENTS 1. Fundamentals of Natural Language Processing 2. Introduction to Language Models 3. Data Collection and Pre-processing for Language Modeling 4. Neural Networks in Language Modeling 5. Neural Network Architectures for Language Modeling 6. Transformer-based Models for Language Modeling 7. Training Large Language Models 8. Advanced Techniques for Language Modeling 9. Top Large Language Models 10. Building First LLM App 11. Applications of LLMs 12. Ethical Considerations 13. Prompt Engineering 14. Future of LLMs and Its Impact

Representation Learning for Natural Language Processing

Representation Learning for Natural Language Processing
Author: Zhiyuan Liu
Publisher: Springer Nature
Total Pages: 319
Release: 2020-07-03
Genre: Computers
ISBN: 9811555737

This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.

Further with Knowledge Graphs

Further with Knowledge Graphs
Author: M. Alam
Publisher: IOS Press
Total Pages: 284
Release: 2021-09-23
Genre: Computers
ISBN: 1643682016

The field of semantic computing is highly diverse, linking areas such as artificial intelligence, data science, knowledge discovery and management, big data analytics, e-commerce, enterprise search, technical documentation, document management, business intelligence, and enterprise vocabulary management. As such it forms an essential part of the computing technology that underpins all our lives today. This volume presents the proceedings of SEMANTiCS 2021, the 17th International Conference on Semantic Systems. As a result of the continuing Coronavirus restrictions, SEMANTiCS 2021 was held in a hybrid form in Amsterdam, the Netherlands, from 6 to 9 September 2021. The annual SEMANTiCS conference provides an important platform for semantic computing professionals and researchers, and attracts information managers, IT­architects, software engineers, and researchers from a wide range of organizations, such as research facilities, NPOs, public administrations and the largest companies in the world. The subtitle of the 2021 conference’s was “In the Era of Knowledge Graphs”, and 66 submissions were received, from which the 19 papers included here were selected following a rigorous single-blind reviewing process; an acceptance rate of 29%. Topics covered include data science, machine learning, logic programming, content engineering, social computing, and the Semantic Web, as well as the additional sub-topics of digital humanities and cultural heritage, legal tech, and distributed and decentralized knowledge graphs. Providing an overview of current research and development, the book will be of interest to all those working in the field of semantic systems.

Knowledge Graphs

Knowledge Graphs
Author: Aidan Hogan
Publisher: Morgan & Claypool Publishers
Total Pages: 257
Release: 2021-11-08
Genre: Computers
ISBN: 1636392369

This book provides a comprehensive and accessible introduction to knowledge graphs, which have recently garnered notable attention from both industry and academia. Knowledge graphs are founded on the principle of applying a graph-based abstraction to data, and are now broadly deployed in scenarios that require integrating and extracting value from multiple, diverse sources of data at large scale. The book defines knowledge graphs and provides a high-level overview of how they are used. It presents and contrasts popular graph models that are commonly used to represent data as graphs, and the languages by which they can be queried before describing how the resulting data graph can be enhanced with notions of schema, identity, and context. The book discusses how ontologies and rules can be used to encode knowledge as well as how inductive techniques—based on statistics, graph analytics, machine learning, etc.—can be used to encode and extract knowledge. It covers techniques for the creation, enrichment, assessment, and refinement of knowledge graphs and surveys recent open and enterprise knowledge graphs and the industries or applications within which they have been most widely adopted. The book closes by discussing the current limitations and future directions along which knowledge graphs are likely to evolve. This book is aimed at students, researchers, and practitioners who wish to learn more about knowledge graphs and how they facilitate extracting value from diverse data at large scale. To make the book accessible for newcomers, running examples and graphical notation are used throughout. Formal definitions and extensive references are also provided for those who opt to delve more deeply into specific topics.

Advances in Knowledge Discovery and Data Mining

Advances in Knowledge Discovery and Data Mining
Author: Hisashi Kashima
Publisher: Springer Nature
Total Pages: 419
Release: 2023-05-26
Genre: Computers
ISBN: 3031333802

The 4-volume set LNAI 13935 - 13938 constitutes the proceedings of the 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, which took place in Osaka, Japan during May 25–28, 2023. The 143 papers presented in these proceedings were carefully reviewed and selected from 813 submissions. They deal with new ideas, original research results, and practical development experiences from all KDD related areas, including data mining, data warehousing, machine learning, artificial intelligence, databases, statistics, knowledge engineering, big data technologies, and foundations.

Advances in Empirical Translation Studies

Advances in Empirical Translation Studies
Author: Meng Ji
Publisher: Cambridge University Press
Total Pages: 285
Release: 2019-06-13
Genre: Computers
ISBN: 1108423272

Introduces the integration of theoretical and applied translation studies for socially-oriented and data-driven empirical translation research.

Semantic AI in Knowledge Graphs

Semantic AI in Knowledge Graphs
Author: Sanju Tiwari
Publisher: CRC Press
Total Pages: 217
Release: 2023-08-21
Genre: Computers
ISBN: 1000911187

Existing research papers do not have complete information in depth about the Semantic AI in Knowledge Graphs. This book has all the basic information required to gain in-depth knowledge of this field. Covers neuro-symbolic AI, explainable AI and deep learning to knowledge discover and mining, and knowledge representation and reasoning.