XML Data Mining

XML Data Mining
Author: Andrea Tagarelli
Publisher:
Total Pages: 521
Release: 2011-12-01
Genre: Data mining
ISBN: 9781613503584

"This book is a collection of knowledge from experts of database, information retrieval, machine learning, and knowledge management communities in developing models, methods and systems for XML data mining that can be used to address key issues and challenges in XML data mining"--Provided by publisher.

XML Data Management

XML Data Management
Author: Akmal B. Chaudhri
Publisher: Addison-Wesley Professional
Total Pages: 682
Release: 2003
Genre: Computers
ISBN: 9780201844528

In this book, you will find discussions on the newest native XML databases, along with information on working with XML-enabled relational database systems. In addition, XML Data Management thoroughly examines benchmarks and analysis techniques for performance of XML databases. This book is best used by students that are knowledgeable in database technology and are familiar with XML.

Encyclopedia of Data Warehousing and Mining, Second Edition

Encyclopedia of Data Warehousing and Mining, Second Edition
Author: Wang, John
Publisher: IGI Global
Total Pages: 2542
Release: 2008-08-31
Genre: Computers
ISBN: 1605660116

There are more than one billion documents on the Web, with the count continually rising at a pace of over one million new documents per day. As information increases, the motivation and interest in data warehousing and mining research and practice remains high in organizational interest. The Encyclopedia of Data Warehousing and Mining, Second Edition, offers thorough exposure to the issues of importance in the rapidly changing field of data warehousing and mining. This essential reference source informs decision makers, problem solvers, and data mining specialists in business, academia, government, and other settings with over 300 entries on theories, methodologies, functionalities, and applications.

Knowledge Discovery in Databases: PKDD 2004

Knowledge Discovery in Databases: PKDD 2004
Author: Jean-Francois Boulicaut
Publisher: Springer Science & Business Media
Total Pages: 578
Release: 2004-09-10
Genre: Computers
ISBN: 3540231080

This book constitutes the refereed proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD 2004, held in Pisa, Italy, in September 2004 jointly with ECML 2004. The 39 revised full papers and 9 revised short papers presented together with abstracts of 5 invited talks were carefully reviewed and selected from 194 papers submitted to PKDD and 107 papers submitted to both, PKDD and ECML. The papers present a wealth of new results in knowledge discovery in databases and address all current issues in the area.

Encyclopedia of Data Warehousing and Mining

Encyclopedia of Data Warehousing and Mining
Author: Wang, John
Publisher: IGI Global
Total Pages: 1382
Release: 2005-06-30
Genre: Computers
ISBN: 1591405599

Data Warehousing and Mining (DWM) is the science of managing and analyzing large datasets and discovering novel patterns and in recent years has emerged as a particularly exciting and industrially relevant area of research. Prodigious amounts of data are now being generated in domains as diverse as market research, functional genomics and pharmaceuticals; intelligently analyzing these data, with the aim of answering crucial questions and helping make informed decisions, is the challenge that lies ahead. The Encyclopedia of Data Warehousing and Mining provides a comprehensive, critical and descriptive examination of concepts, issues, trends, and challenges in this rapidly expanding field of data warehousing and mining (DWM). This encyclopedia consists of more than 350 contributors from 32 countries, 1,800 terms and definitions, and more than 4,400 references. This authoritative publication offers in-depth coverage of evolutions, theories, methodologies, functionalities, and applications of DWM in such interdisciplinary industries as healthcare informatics, artificial intelligence, financial modeling, and applied statistics, making it a single source of knowledge and latest discoveries in the field of DWM.

XML Data Mining: Models, Methods, and Applications

XML Data Mining: Models, Methods, and Applications
Author: Tagarelli, Andrea
Publisher: IGI Global
Total Pages: 538
Release: 2011-11-30
Genre: Computers
ISBN: 1613503571

The widespread use of XML in business and scientific databases has prompted the development of methodologies, techniques, and systems for effectively managing and analyzing XML data. This has increasingly attracted the attention of different research communities, including database, information retrieval, pattern recognition, and machine learning, from which several proposals have been offered to address problems in XML data management and knowledge discovery. XML Data Mining: Models, Methods, and Applications aims to collect knowledge from experts of database, information retrieval, machine learning, and knowledge management communities in developing models, methods, and systems for XML data mining. This book addresses key issues and challenges in XML data mining, offering insights into the various existing solutions and best practices for modeling, processing, analyzing XML data, and for evaluating performance of XML data mining algorithms and systems.

Foundations and Novel Approaches in Data Mining

Foundations and Novel Approaches in Data Mining
Author: Tsau Young Lin
Publisher: Springer Science & Business Media
Total Pages: 398
Release: 2005-11-03
Genre: Mathematics
ISBN: 9783540283157

Data-mining has become a popular research topic in recent years for the treatment of the "data rich and information poor" syndrome. Currently, application oriented engineers are only concerned with their immediate problems, which results in an ad hoc method of problem solving. Researchers, on the other hand, lack an understanding of the practical issues of data-mining for real-world problems and often concentrate on issues that are of no significance to the practitioners. In this volume, we hope to remedy problems by (1) presenting a theoretical foundation of data-mining, and (2) providing important new directions for data-mining research. A set of well respected data mining theoreticians were invited to present their views on the fundamental science of data mining. We have also called on researchers with practical data mining experiences to present new important data-mining topics.