Kernel Methods And Hybrid Evolutionary Algorithms In Energy Forecasting
Download Kernel Methods And Hybrid Evolutionary Algorithms In Energy Forecasting full books in PDF, epub, and Kindle. Read online free Kernel Methods And Hybrid Evolutionary Algorithms In Energy Forecasting ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Wei-Chiang Hong |
Publisher | : MDPI |
Total Pages | : 187 |
Release | : 2018-10-22 |
Genre | : Technology & Engineering |
ISBN | : 3038972924 |
This book is a printed edition of the Special Issue "Kernel Methods and Hybrid Evolutionary Algorithms in Energy Forecasting" that was published in Energies
Author | : Wei-Chiang Hong |
Publisher | : |
Total Pages | : |
Release | : 2018 |
Genre | : |
ISBN | : 9783038972938 |
The development of kernel methods and hybrid evolutionary algorithms (HEAs) to support experts in energy forecasting is of great importance to improving the accuracy of the actions derived from an energy decision maker, and it is crucial that they are theoretically sound. In addition, more accurate or more precise energy demand forecasts are required when decisions are made in a competitive environment. Therefore, this is of special relevance in the Big Data era. These forecasts are usually based on a complex function combination. These models have resulted in over-reliance on the use of informal judgment and higher expense if lacking the ability to catch the data patterns. The novel applications of kernel methods and hybrid evolutionary algorithms can provide more satisfactory parameters in forecasting models. We aimed to attract researchers with an interest in the research areas described above. Specifically, we were interested in contributions towards the development of HEAs with kernel methods or with other novel methods (e.g., chaotic mapping mechanism, fuzzy theory, and quantum computing mechanism), which, with superior capabilities over the traditional optimization approaches, aim to overcome some embedded drawbacks and then apply these new HEAs to be hybridized with original forecasting models to significantly improve forecasting accuracy.
Author | : Wei-Chiang Hong |
Publisher | : MDPI |
Total Pages | : 251 |
Release | : 2018-10-19 |
Genre | : Technology & Engineering |
ISBN | : 303897286X |
This book is a printed edition of the Special Issue "Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting" that was published in Energies
Author | : Wei-Chiang Hong |
Publisher | : Springer Nature |
Total Pages | : 188 |
Release | : 2020-01-01 |
Genre | : Business & Economics |
ISBN | : 3030365298 |
This book is written for researchers and postgraduates who are interested in developing high-accurate energy demand forecasting models that outperform traditional models by hybridizing intelligent technologies. It covers meta-heuristic algorithms, chaotic mapping mechanism, quantum computing mechanism, recurrent mechanisms, phase space reconstruction, and recurrence plot theory. The book clearly illustrates how these intelligent technologies could be hybridized with those traditional forecasting models. This book provides many figures to deonstrate how these hybrid intelligent technologies are being applied to exceed the limitations of existing models.
Author | : Wei-Chiang Hong |
Publisher | : MDPI |
Total Pages | : 251 |
Release | : 2018-10-19 |
Genre | : Technology & Engineering |
ISBN | : 3038972908 |
This book is a printed edition of the Special Issue "Hybrid Advanced Techniques for Forecasting in Energy Sector" that was published in Energies
Author | : Federico Divina |
Publisher | : MDPI |
Total Pages | : 100 |
Release | : 2021-08-30 |
Genre | : Technology & Engineering |
ISBN | : 3036508627 |
The use of data collectors in energy systems is growing more and more. For example, smart sensors are now widely used in energy production and energy consumption systems. This implies that huge amounts of data are generated and need to be analyzed in order to extract useful insights from them. Such big data give rise to a number of opportunities and challenges for informed decision making. In recent years, researchers have been working very actively in order to come up with effective and powerful techniques in order to deal with the huge amount of data available. Such approaches can be used in the context of energy production and consumption considering the amount of data produced by all samples and measurements, as well as including many additional features. With them, automated machine learning methods for extracting relevant patterns, high-performance computing, or data visualization are being successfully applied to energy demand forecasting.
Author | : Weihao Hu |
Publisher | : Frontiers Media SA |
Total Pages | : 265 |
Release | : 2022-10-19 |
Genre | : Technology & Engineering |
ISBN | : 2832502806 |
Author | : Ravinesh Deo |
Publisher | : Elsevier |
Total Pages | : 553 |
Release | : 2020-09-30 |
Genre | : Technology & Engineering |
ISBN | : 012817773X |
Predictive Modeling for Energy Management and Power Systems Engineering introduces readers to the cutting-edge use of big data and large computational infrastructures in energy demand estimation and power management systems. The book supports engineers and scientists who seek to become familiar with advanced optimization techniques for power systems designs, optimization techniques and algorithms for consumer power management, and potential applications of machine learning and artificial intelligence in this field. The book provides modeling theory in an easy-to-read format, verified with on-site models and case studies for specific geographic regions and complex consumer markets. - Presents advanced optimization techniques to improve existing energy demand system - Provides data-analytic models and their practical relevance in proven case studies - Explores novel developments in machine-learning and artificial intelligence applied in energy management - Provides modeling theory in an easy-to-read format
Author | : Pandian Vasant |
Publisher | : Springer Nature |
Total Pages | : 456 |
Release | : 2023-12-14 |
Genre | : Technology & Engineering |
ISBN | : 3031501519 |
This book of Springer Nature is another proof of Springer’s outstanding greatness on the lively interface of Holistic Computational Optimization, Green IoTs, Smart Modeling, and Deep Learning! It is a masterpiece of what our community of academics and experts can provide when an interconnected approach of joint, mutual, and meta-learning is supported by advanced operational research and experience of the World-Leader Springer Nature! The 6th edition of International Conference on Intelligent Computing and Optimization took place at G Hua Hin Resort & Mall on April 27–28, 2023, with tremendous support from the global research scholars across the planet. Objective is to celebrate “Research Novelty with Compassion and Wisdom” with researchers, scholars, experts, and investigators in Intelligent Computing and Optimization across the globe, to share knowledge, experience, and innovation—a marvelous opportunity for discourse and mutuality by novel research, invention, and creativity. This proceedings book of the 6th ICO’2023 is published by Springer Nature—Quality Label of Enlightenment.
Author | : Wei-Chiang Hong |
Publisher | : MDPI |
Total Pages | : 262 |
Release | : 2020-04-01 |
Genre | : Computers |
ISBN | : 3039283642 |
Accurate energy forecasting is important to facilitate the decision-making process in order to achieve higher efficiency and reliability in power system operation and security, economic energy use, contingency scheduling, the planning and maintenance of energy supply systems, and so on. In recent decades, many energy forecasting models have been continuously proposed to improve forecasting accuracy, including traditional statistical models (e.g., ARIMA, SARIMA, ARMAX, multi-variate regression, exponential smoothing models, Kalman filtering, Bayesian estimation models, etc.) and artificial intelligence models (e.g., artificial neural networks (ANNs), knowledge-based expert systems, evolutionary computation models, support vector regression, etc.). Recently, due to the great development of optimization modeling methods (e.g., quadratic programming method, differential empirical mode method, evolutionary algorithms, meta-heuristic algorithms, etc.) and intelligent computing mechanisms (e.g., quantum computing, chaotic mapping, cloud mapping, seasonal mechanism, etc.), many novel hybrid models or models combined with the above-mentioned intelligent-optimization-based models have also been proposed to achieve satisfactory forecasting accuracy levels. It is important to explore the tendency and development of intelligent-optimization-based modeling methodologies and to enrich their practical performances, particularly for marine renewable energy forecasting.