How Economics Became a Mathematical Science

How Economics Became a Mathematical Science
Author: E. Roy Weintraub
Publisher: Duke University Press
Total Pages: 329
Release: 2002-05-28
Genre: Business & Economics
ISBN: 0822383802

In How Economics Became a Mathematical Science E. Roy Weintraub traces the history of economics through the prism of the history of mathematics in the twentieth century. As mathematics has evolved, so has the image of mathematics, explains Weintraub, such as ideas about the standards for accepting proof, the meaning of rigor, and the nature of the mathematical enterprise itself. He also shows how economics itself has been shaped by economists’ changing images of mathematics. Whereas others have viewed economics as autonomous, Weintraub presents a different picture, one in which changes in mathematics—both within the body of knowledge that constitutes mathematics and in how it is thought of as a discipline and as a type of knowledge—have been intertwined with the evolution of economic thought. Weintraub begins his account with Cambridge University, the intellectual birthplace of modern economics, and examines specifically Alfred Marshall and the Mathematical Tripos examinations—tests in mathematics that were required of all who wished to study economics at Cambridge. He proceeds to interrogate the idea of a rigorous mathematical economics through the connections between particular mathematical economists and mathematicians in each of the decades of the first half of the twentieth century, and thus describes how the mathematical issues of formalism and axiomatization have shaped economics. Finally, How Economics Became a Mathematical Science reconstructs the career of the economist Sidney Weintraub, whose relationship to mathematics is viewed through his relationships with his mathematician brother, Hal, and his mathematician-economist son, the book’s author.

Handbook of Mathematical Economics

Handbook of Mathematical Economics
Author: Kenneth J. Arrow
Publisher: North Holland
Total Pages: 408
Release: 1981
Genre: Business & Economics
ISBN:

V.2: Mathematical approaches to microeconomic theory. Mathematical approaches to competitive equilibrium.

Mathematical Economics

Mathematical Economics
Author: Kam Yu
Publisher: Springer Nature
Total Pages: 223
Release: 2019-11-01
Genre: Mathematics
ISBN: 3030272893

This textbook provides a one-semester introduction to mathematical economics for first year graduate and senior undergraduate students. Intended to fill the gap between typical liberal arts curriculum and the rigorous mathematical modeling of graduate study in economics, this text provides a concise introduction to the mathematics needed for core microeconomics, macroeconomics, and econometrics courses. Chapters 1 through 5 builds students’ skills in formal proof, axiomatic treatment of linear algebra, and elementary vector differentiation. Chapters 6 and 7 present the basic tools needed for microeconomic analysis. Chapter 8 provides a quick introduction to (or review of) probability theory. Chapter 9 introduces dynamic modeling, applicable in advanced macroeconomics courses. The materials assume prerequisites in undergraduate calculus and linear algebra. Each chapter includes in-text exercises and a solutions manual, making this text ideal for self-study.

Foundations of Mathematical Economics

Foundations of Mathematical Economics
Author: Michael Carter
Publisher: MIT Press
Total Pages: 678
Release: 2001-10-26
Genre: Business & Economics
ISBN: 9780262531924

This book provides a comprehensive introduction to the mathematical foundations of economics, from basic set theory to fixed point theorems and constrained optimization. Rather than simply offer a collection of problem-solving techniques, the book emphasizes the unifying mathematical principles that underlie economics. Features include an extended presentation of separation theorems and their applications, an account of constraint qualification in constrained optimization, and an introduction to monotone comparative statics. These topics are developed by way of more than 800 exercises. The book is designed to be used as a graduate text, a resource for self-study, and a reference for the professional economist.

Methods of Mathematical Economics

Methods of Mathematical Economics
Author: Joel N. Franklin
Publisher: Springer
Total Pages: 307
Release: 2013-06-29
Genre: Mathematics
ISBN: 3662253178

In 1924 the firm of Julius Springer published the first volume of Methods of Mathematical Physics by Richard Courant and David Hilbert. In the preface, Courant says this: Since the seventeenth century, physical intuition has served as a vital source for mathematical problems and methods. Recent trends and fashions have, however, weakened the connection between mathematics and physics; mathematicians, turning away from the roots of mathematics in intuition, have concentrated on refinement and emphasized the postulational side of mathematics, and at times have overlooked the unity of their science with physics and other fields. In many cases, physicists have ceased to appreciate the attitudes of mathematicians. This rift is unquestionably a serious threat to science as a whole; the broad stream of scientific development may split into smaller and smaller rivulets and dry out. It seems therefore important to direct our efforts toward reuniting divergent trends by clarifying the common features and interconnections of many distinct and diverse scientific facts. Only thus can the student attain some mastery of the material and the basis be prepared for further organic development of research. The present work is designed to serve this purpose for the field of mathe matical physics . . . . Completeness is not attempted, but it is hoped that access to a rich and important field will be facilitated by the book. When I was a student, the book of Courant and Hilbert was my bible.

Economics for Mathematicians

Economics for Mathematicians
Author: John William Scott Cassels
Publisher: Cambridge University Press
Total Pages: 161
Release: 1981-12-10
Genre: Business & Economics
ISBN: 052128614X

This is the expanded notes of a course intended to introduce students specializing in mathematics to some of the central ideas of traditional economics. The book should be readily accessible to anyone with some training in university mathematics; more advanced mathematical tools are explained in the appendices. Thus this text could be used for undergraduate mathematics courses or as supplementary reading for students of mathematical economics.

Principles of Mathematical Economics

Principles of Mathematical Economics
Author: Shapoor Vali
Publisher: Springer Science & Business Media
Total Pages: 510
Release: 2013-12-02
Genre: Business & Economics
ISBN: 9462390363

Under the assumption of a basic knowledge of algebra and analysis, micro and macro economics, this self-contained and self-sufficient textbook is targeted towards upper undergraduate audiences in economics and related fields such as business, management and the applied social sciences. The basic economics core ideas and theories are exposed and developed, together with the corresponding mathematical formulations. From the basics, progress is rapidly made to sophisticated nonlinear, economic modelling and real-world problem solving. Extensive exercises are included, and the textbook is particularly well-suited for computer-assisted learning.

Introduction to Mathematical Economics

Introduction to Mathematical Economics
Author: M.C. Kemp
Publisher: Springer Science & Business Media
Total Pages: 255
Release: 2012-12-06
Genre: Business & Economics
ISBN: 146126278X

Our objectives may be briefly stated. They are two. First, we have sought to provide a compact and digestible exposition of some sub-branches of mathematics which are of interest to economists but which are underplayed in mathematical texts and dispersed in the journal literature. Second, we have sought to demonstrate the usefulness of the mathematics by providing a systematic account of modern neoclassical economics, that is, of those parts of economics from which jointness in production has been excluded. The book is introductory not in the sense that it can be read by any high-school graduate but in the sense that it provides some of the mathematics needed to appreciate modern general-equilibrium economic theory. It is aimed primarily at first-year graduate students and final-year honors students in economics who have studied mathematics at the university level for two years and who, in particular, have mastered a full-year course in analysis and calculus. The book is the outcome of a long correspondence punctuated by periodic visits by Kimura to the University of New South Wales. Without those visits we would never have finished. They were made possible by generous grants from the Leverhulme Foundation, Nagoya City University, and the University of New South Wales. Equally indispensible were the expert advice and generous encouragement of our friends Martin Beckmann, Takashi Negishi, Ryuzo Sato, and Yasuo Uekawa.

Mathematics for Economics

Mathematics for Economics
Author: Michael Hoy
Publisher: MIT Press
Total Pages: 164
Release: 2001
Genre: Business & Economics
ISBN: 9780262582018

This text offers a presentation of the mathematics required to tackle problems in economic analysis. After a review of the fundamentals of sets, numbers, and functions, it covers limits and continuity, the calculus of functions of one variable, linear algebra, multivariate calculus, and dynamics.

A First Course in Mathematical Economics

A First Course in Mathematical Economics
Author: Sunanda Roy
Publisher: Cambridge Scholars Publishing
Total Pages: 364
Release: 2020-03-17
Genre: Business & Economics
ISBN: 1527548538

The book studies a set of mathematical tools and techniques most necessary for undergraduate economics majors as they transition from largely non-technical first-year principles courses into calculus-based upper-level courses in economics. The book’s presentation style places more emphasis on the intuition underlying the mathematical concepts and results discussed and less on proofs and technical details. Its discussion topics have been chosen in terms of their immediate usefulness for beginners, while examples and applications are drawn from material that is familiar from introductory economics courses.