Jordan Triple Systems by the Grid Approach

Jordan Triple Systems by the Grid Approach
Author: Erhard Neher
Publisher: Springer
Total Pages: 206
Release: 2006-11-15
Genre: Mathematics
ISBN: 354047921X

Grids are special families of tripotents in Jordan triple systems. This research monograph presents a theory of grids including their classification and coordinization of their cover. Among the applications given are - classification of simple Jordan triple systems covered by a grid, reproving and extending most of the known classification theorems for Jordan algebras and Jordan pairs - a Jordan-theoretic interpretation of the geometry of the 27 lines on a cubic surface - structure theories for Hilbert-triples and JBW*-triples, the Jordan analogues of Hilbert-triples and W*-algebras which describe certain symmetric Banach manifolds. The notes are essentially self-contained and independent of the structure theory of Jordan algebras and Jordan pairs. They can be read by anyone with a basic knowledge in algebraic geometry or functional analysis. The book is intended to serve both as a reference for researchers in Jordan theory and as an introductory textbook for newcomers to the subject.

Jordan Triple Systems by the Grid Approach

Jordan Triple Systems by the Grid Approach
Author: Erhard Neher
Publisher: Berlin ; New York : Springer-Verlag
Total Pages: 192
Release: 1987
Genre: Mathematics
ISBN: 9780387183626

Grids are special families of tripotents in Jordan triple systems. This research monograph presents a theory of grids including their classification and coordinization of their cover. Among the applications given are - classification of simple Jordan triple systems covered by a grid, reproving and extending most of the known classification theorems for Jordan algebras and Jordan pairs - a Jordan-theoretic interpretation of the geometry of the 27 lines on a cubic surface - structure theories for Hilbert-triples and JBW*-triples, the Jordan analogues of Hilbert-triples and W*-algebras which describe certain symmetric Banach manifolds. The notes are essentially self-contained and independent of the structure theory of Jordan algebras and Jordan pairs. They can be read by anyone with a basic knowledge in algebraic geometry or functional analysis. The book is intended to serve both as a reference for researchers in Jordan theory and as an introductory textbook for newcomers to the subject.

Jordan Triple Systems in Complex and Functional Analysis

Jordan Triple Systems in Complex and Functional Analysis
Author: José M. Isidro
Publisher: American Mathematical Soc.
Total Pages: 577
Release: 2019-12-09
Genre: Education
ISBN: 1470450836

This book is a systematic account of the impressive developments in the theory of symmetric manifolds achieved over the past 50 years. It contains detailed and friendly, but rigorous, proofs of the key results in the theory. Milestones are the study of the group of holomomorphic automorphisms of bounded domains in a complex Banach space (Vigué and Upmeier in the late 1970s), Kaup's theorem on the equivalence of the categories of symmetric Banach manifolds and that of hermitian Jordan triple systems, and the culminating point in the process: the Riemann mapping theorem for complex Banach spaces (Kaup, 1982). This led to the introduction of wide classes of Banach spaces known as JB∗-triples and JBW∗-triples whose geometry has been thoroughly studied by several outstanding mathematicians in the late 1980s. The book presents a good example of fruitful interaction between different branches of mathematics, making it attractive for mathematicians interested in various fields such as algebra, differential geometry and, of course, complex and functional analysis.

Steinberg Groups for Jordan Pairs

Steinberg Groups for Jordan Pairs
Author: Ottmar Loos
Publisher: Springer Nature
Total Pages: 470
Release: 2020-01-10
Genre: Mathematics
ISBN: 1071602640

The present monograph develops a unified theory of Steinberg groups, independent of matrix representations, based on the theory of Jordan pairs and the theory of 3-graded locally finite root systems. The development of this approach occurs over six chapters, progressing from groups with commutator relations and their Steinberg groups, then on to Jordan pairs, 3-graded locally finite root systems, and groups associated with Jordan pairs graded by root systems, before exploring the volume's main focus: the definition of the Steinberg group of a root graded Jordan pair by a small set of relations, and its central closedness. Several original concepts, such as the notions of Jordan graphs and Weyl elements, provide readers with the necessary tools from combinatorics and group theory. Steinberg Groups for Jordan Pairs is ideal for PhD students and researchers in the fields of elementary groups, Steinberg groups, Jordan algebras, and Jordan pairs. By adopting a unified approach, anybody interested in this area who seeks an alternative to case-by-case arguments and explicit matrix calculations will find this book essential.

Jordan Algebras

Jordan Algebras
Author: Wilhelm Kaup
Publisher: Walter de Gruyter
Total Pages: 353
Release: 2011-05-02
Genre: Mathematics
ISBN: 3110878119

The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.

A Taste of Jordan Algebras

A Taste of Jordan Algebras
Author: Kevin McCrimmon
Publisher: Springer Science & Business Media
Total Pages: 584
Release: 2006-05-29
Genre: Mathematics
ISBN: 0387217967

This book describes the history of Jordan algebras and describes in full mathematical detail the recent structure theory for Jordan algebras of arbitrary dimension due to Efim Zel'manov. Jordan algebras crop up in many surprising settings, and find application to a variety of mathematical areas. No knowledge is required beyond standard first-year graduate algebra courses.

Locally Finite Root Systems

Locally Finite Root Systems
Author: Ottmar Loos
Publisher: American Mathematical Soc.
Total Pages: 232
Release: 2004
Genre: Mathematics
ISBN: 0821835467

We develop the basic theory of root systems $R$ in a real vector space $X$ which are defined in analogy to the usual finite root systems, except that finiteness is replaced by local finiteness: the intersection of $R$ with every finite-dimensional subspace of $X$ is finite. The main topics are Weyl groups, parabolic subsets and positive systems, weights, and gradings.

Non-Associative Algebra and Its Applications

Non-Associative Algebra and Its Applications
Author: Santos González
Publisher: Springer Science & Business Media
Total Pages: 429
Release: 2012-12-06
Genre: Mathematics
ISBN: 9401109907

This volume contains the proceedings of the Third International Conference on Non-Associative Algebra and Its Applications, held in Oviedo, Spain, July 12--17, 1993. The conference brought together specialists from all over the world who work in this interesting and active field, which is currently enjoying much attention. All aspects of non-associative algebra are covered. Topics range from purely mathematical subjects to a wide spectrum of applications, and from state-of-the-art articles to overview papers. This collection will point the way for further research for many years to come. The volume is of interest to researchers in mathematics as well as those whose work involves the application of non-associative algebra in such areas as physics, biology and genetics.

Encyclopaedia of Mathematics, Supplement III

Encyclopaedia of Mathematics, Supplement III
Author: Michiel Hazewinkel
Publisher: Springer Science & Business Media
Total Pages: 564
Release: 2007-11-23
Genre: Mathematics
ISBN: 0306483734

This is the third supplementary volume to Kluwer's highly acclaimed twelve-volume Encyclopaedia of Mathematics. This additional volume contains nearly 500 new entries written by experts and covers developments and topics not included in the previous volumes. These entries are arranged alphabetically throughout and a detailed index is included. This supplementary volume enhances the existing twelve volumes, and together, these thirteen volumes represent the most authoritative, comprehensive and up-to-date Encyclopaedia of Mathematics available.

Non-Associative Algebras and Related Topics

Non-Associative Algebras and Related Topics
Author: Helena Albuquerque
Publisher: Springer Nature
Total Pages: 305
Release: 2023-07-28
Genre: Mathematics
ISBN: 3031327071

This proceedings volume presents a selection of peer-reviewed contributions from the Second Non-Associative Algebras and Related Topics (NAART II) conference, which was held at the University of Coimbra, Portugal, from July 18–22, 2022. The conference was held in honor of mathematician Alberto Elduque, who has made significant contributions to the study of non-associative structures such as Lie, Jordan, and Leibniz algebras. The papers in this volume are organized into four parts: Lie algebras, superalgebras, and groups; Leibniz algebras; associative and Jordan algebras; and other non-associative structures. They cover a variety of topics, including classification problems, special maps (automorphisms, derivations, etc.), constructions that relate different structures, and representation theory. One of the unique features of NAART is that it is open to all topics related to non-associative algebras, including octonion algebras, composite algebras, Banach algebras, connections with geometry, applications in coding theory, combinatorial problems, and more. This diversity allows researchers from a range of fields to find the conference subjects interesting and discover connections with their own areas, even if they are not traditionally considered non-associative algebraists. Since its inception in 2011, NAART has been committed to fostering cross-disciplinary connections in the study of non-associative structures.