Involutions And Handle Decompositions Of 4 Manifolds
Download Involutions And Handle Decompositions Of 4 Manifolds full books in PDF, epub, and Kindle. Read online free Involutions And Handle Decompositions Of 4 Manifolds ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Cameron Gordon |
Publisher | : American Mathematical Soc. |
Total Pages | : 538 |
Release | : 1984 |
Genre | : Mathematics |
ISBN | : 0821850334 |
Covers the proceedings of the Summer Research Conference on 4-manifolds held at Durham, New Hampshire, July 1982, under the auspices of the American Mathematical Society and National Science Foundation.
Author | : Robert E. Gompf |
Publisher | : American Mathematical Soc. |
Total Pages | : 576 |
Release | : 1999 |
Genre | : Mathematics |
ISBN | : 0821809946 |
Presents an exposition of Kirby calculus, or handle body theory on 4-manifolds. This book includes such topics as branched coverings and the geography of complex surfaces, elliptic and Lefschetz fibrations, $h$-cobordisms, symplectic 4-manifolds, and Stein surfaces.
Author | : Robert J. Daverman |
Publisher | : American Mathematical Soc. |
Total Pages | : 338 |
Release | : |
Genre | : Mathematics |
ISBN | : 9780821869482 |
Decomposition theory studies decompositions, or partitions, of manifolds into simple pieces, usually cell-like sets. Since its inception in 1929, the subject has become an important tool in geometric topology. The main goal of the book is to help students interested in geometric topology to bridge the gap between entry-level graduate courses and research at the frontier as well as to demonstrate interrelations of decomposition theory with other parts of geometric topology. With numerous exercises and problems, many of them quite challenging, the book continues to be strongly recommended to everyone who is interested in this subject. The book also contains an extensive bibliography and a useful index of key words, so it can also serve as a reference to a specialist.
Author | : Selman Akbulut |
Publisher | : Oxford University Press |
Total Pages | : 275 |
Release | : 2016 |
Genre | : Mathematics |
ISBN | : 0198784864 |
This book presents the topology of smooth 4-manifolds in an intuitive self-contained way, developed over a number of years by Professor Akbulut. The text is aimed at graduate students and focuses on the teaching and learning of the subject, giving a direct approach to constructions and theorems which are supplemented by exercises to help the reader work through the details not covered in the proofs. The book contains a hundred colour illustrations to demonstrate the ideas rather than providing long-winded and potentially unclear explanations. Key results have been selected that relate to the material discussed and the author has provided examples of how to analyse them with the techniques developed in earlier chapters.
Author | : |
Publisher | : Academic Press |
Total Pages | : 331 |
Release | : 1986-12-22 |
Genre | : Mathematics |
ISBN | : 0080874436 |
Decompositions of Manifolds
Author | : Robert E. Gompf |
Publisher | : American Mathematical Society |
Total Pages | : 576 |
Release | : 2023-08-10 |
Genre | : Mathematics |
ISBN | : 1470474557 |
Since the early 1980s, there has been an explosive growth in 4-manifold theory, particularly due to the influx of interest and ideas from gauge theory and algebraic geometry. This book offers an exposition of the subject from the topological point of view. It bridges the gap to other disciplines and presents classical but important topological techniques that have not previously appeared in the literature. Part I of the text presents the basics of the theory at the second-year graduate level and offers an overview of current research. Part II is devoted to an exposition of Kirby calculus, or handlebody theory on 4-manifolds. It is both elementary and comprehensive. Part III offers in-depth treatments of a broad range of topics from current 4-manifold research. Topics include branched coverings and the geography of complex surfaces, elliptic and Lefschetz fibrations, $h$-cobordisms, symplectic 4-manifolds, and Stein surfaces. The authors present many important applications. The text is supplemented with over 300 illustrations and numerous exercises, with solutions given in the book. I greatly recommend this wonderful book to any researcher in 4-manifold topology for the novel ideas, techniques, constructions, and computations on the topic, presented in a very fascinating way. I think really that every student, mathematician, and researcher interested in 4-manifold topology, should own a copy of this beautiful book. —Zentralblatt MATH This book gives an excellent introduction into the theory of 4-manifolds and can be strongly recommended to beginners in this field … carefully and clearly written; the authors have evidently paid great attention to the presentation of the material … contains many really pretty and interesting examples and a great number of exercises; the final chapter is then devoted to solutions of some of these … this type of presentation makes the subject more attractive and its study easier. —European Mathematical Society Newsletter
Author | : Selman Akbulut |
Publisher | : Oxford University Press |
Total Pages | : 221 |
Release | : 2016-09-22 |
Genre | : Mathematics |
ISBN | : 0191087769 |
This book presents the topology of smooth 4-manifolds in an intuitive self-contained way, developed over a number of years by Professor Akbulut. The text is aimed at graduate students and focuses on the teaching and learning of the subject, giving a direct approach to constructions and theorems which are supplemented by exercises to help the reader work through the details not covered in the proofs. The book contains a hundred colour illustrations to demonstrate the ideas rather than providing long-winded and potentially unclear explanations. Key results have been selected that relate to the material discussed and the author has provided examples of how to analyse them with the techniques developed in earlier chapters.
Author | : Charles Terence Clegg Wall |
Publisher | : American Mathematical Soc. |
Total Pages | : 321 |
Release | : 1999 |
Genre | : Mathematics |
ISBN | : 0821809423 |
The publication of this book in 1970 marked the culmination of a period in the history of the topology of manifolds. This edition, based on the original text, is supplemented by notes on subsequent developments and updated references and commentaries.
Author | : Andrew Ranicki |
Publisher | : Oxford University Press |
Total Pages | : 396 |
Release | : 2002 |
Genre | : Mathematics |
ISBN | : 9780198509240 |
This book is an introduction to surgery theory: the standard classification method for high-dimensional manifolds. It is aimed at graduate students, who have already had a basic topology course, and would now like to understand the topology of high-dimensional manifolds. This text contains entry-level accounts of the various prerequisites of both algebra and topology, including basic homotopy and homology, Poincare duality, bundles, co-bordism, embeddings, immersions, Whitehead torsion, Poincare complexes, spherical fibrations and quadratic forms and formations. While concentrating on the basic mechanics of surgery, this book includes many worked examples, useful drawings for illustration of the algebra and references for further reading.
Author | : Hansjörg Geiges |
Publisher | : Cambridge University Press |
Total Pages | : 8 |
Release | : 2008-03-13 |
Genre | : Mathematics |
ISBN | : 1139467956 |
This text on contact topology is a comprehensive introduction to the subject, including recent striking applications in geometric and differential topology: Eliashberg's proof of Cerf's theorem via the classification of tight contact structures on the 3-sphere, and the Kronheimer-Mrowka proof of property P for knots via symplectic fillings of contact 3-manifolds. Starting with the basic differential topology of contact manifolds, all aspects of 3-dimensional contact manifolds are treated in this book. One notable feature is a detailed exposition of Eliashberg's classification of overtwisted contact structures. Later chapters also deal with higher-dimensional contact topology. Here the focus is on contact surgery, but other constructions of contact manifolds are described, such as open books or fibre connected sums. This book serves both as a self-contained introduction to the subject for advanced graduate students and as a reference for researchers.