Geophysical Data Analysis: Discrete Inverse Theory

Geophysical Data Analysis: Discrete Inverse Theory
Author: William Menke
Publisher: Academic Press
Total Pages: 273
Release: 2012-12-02
Genre: Science
ISBN: 0323141285

Geophysical Data Analysis: Discrete Inverse Theory is an introductory text focusing on discrete inverse theory that is concerned with parameters that either are truly discrete or can be adequately approximated as discrete. Organized into 12 chapters, the book's opening chapters provide a general background of inverse problems and their corresponding solution, as well as some of the basic concepts from probability theory that are applied throughout the text. Chapters 3-7 discuss the solution of the canonical inverse problem, that is, the linear problem with Gaussian statistics, and discussions on problems that are non-Gaussian and nonlinear are covered in Chapters 8 and 9. Chapters 10-12 present examples of the use of inverse theory and a discussion on the numerical algorithms that must be employed to solve inverse problems on a computer. This book is of value to graduate students and many college seniors in the applied sciences.

Linear and Nonlinear Inverse Problems with Practical Applications

Linear and Nonlinear Inverse Problems with Practical Applications
Author: Jennifer L. Mueller
Publisher: SIAM
Total Pages: 349
Release: 2012-11-30
Genre: Mathematics
ISBN: 1611972345

Inverse problems arise in practical applications whenever there is a need to interpret indirect measurements. This book explains how to identify ill-posed inverse problems arising in practice and gives a hands-on guide to designing computational solution methods for them, with related codes on an accompanying website. The guiding linear inversion examples are the problem of image deblurring, x-ray tomography, and backward parabolic problems, including heat transfer. A thorough treatment of electrical impedance tomography is used as the guiding nonlinear inversion example which combines the analytic-geometric research tradition and the regularization-based school of thought in a fruitful manner. This book is complete with exercises and project topics, making it ideal as a classroom textbook or self-study guide for graduate and advanced undergraduate students in mathematics, engineering or physics who wish to learn about computational inversion. It also acts as a useful guide for researchers who develop inversion techniques in high-tech industry.

Inverse Limits

Inverse Limits
Author: W.T. Ingram
Publisher: Springer Science & Business Media
Total Pages: 229
Release: 2011-11-06
Genre: Mathematics
ISBN: 146141797X

Inverse limits provide a powerful tool for constructing complicated spaces from simple ones. They also turn the study of a dynamical system consisting of a space and a self-map into a study of a (likely more complicated) space and a self-homeomorphism. In four chapters along with an appendix containing background material the authors develop the theory of inverse limits. The book begins with an introduction through inverse limits on [0,1] before moving to a general treatment of the subject. Special topics in continuum theory complete the book. Although it is not a book on dynamics, the influence of dynamics can be seen throughout; for instance, it includes studies of inverse limits with maps from families of maps that are of interest to dynamicists such as the logistic and the tent families. This book will serve as a useful reference to graduate students and researchers in continuum theory and dynamical systems. Researchers working in applied areas who are discovering inverse limits in their work will also benefit from this book.

The Algonquian Inverse

The Algonquian Inverse
Author: Will Oxford
Publisher: Oxford University Press
Total Pages: 353
Release: 2023-11-28
Genre: Language Arts & Disciplines
ISBN: 0192871803

This book serves as a definitive reference for inverse morphology across all documented Algonquian languages. It considers not only the morphology of the inverse construction but also its syntax and pragmatics, giving equal weight to diachronic, typological, functional, and formal perspectives.

Inverse Problems and Applications

Inverse Problems and Applications
Author: Gunther Uhlmann
Publisher: Cambridge University Press
Total Pages: 593
Release: 2013
Genre: Mathematics
ISBN: 1107032016

Inverse problems lie at the heart of contemporary scientific inquiry and technological development. Applications include a variety of medical and other imaging techniques, which are used for early detection of cancer and pulmonary edema, location of oil and mineral deposits in the Earth's interior, creation of astrophysical images from telescope data, finding cracks and interfaces within materials, shape optimization, model identification in growth processes, and modeling in the life sciences among others. The expository survey essays in this book describe recent developments in inverse problems and imaging, including hybrid or couple-physics methods arising in medical imaging, Calderon's problem and electrical impedance tomography, inverse problems arising in global seismology and oil exploration, inverse spectral problems, and the study of asymptotically hyperbolic spaces. It is suitable for graduate students and researchers interested in inverse problems and their applications.

An Introduction to Inverse Problems with Applications

An Introduction to Inverse Problems with Applications
Author: Francisco Duarte Moura Neto
Publisher: Springer Science & Business Media
Total Pages: 255
Release: 2012-09-14
Genre: Mathematics
ISBN: 3642325564

Computational engineering/science uses a blend of applications, mathematical models and computations. Mathematical models require accurate approximations of their parameters, which are often viewed as solutions to inverse problems. Thus, the study of inverse problems is an integral part of computational engineering/science. This book presents several aspects of inverse problems along with needed prerequisite topics in numerical analysis and matrix algebra. If the reader has previously studied these prerequisites, then one can rapidly move to the inverse problems in chapters 4-8 on image restoration, thermal radiation, thermal characterization and heat transfer. “This text does provide a comprehensive introduction to inverse problems and fills a void in the literature”. Robert E White, Professor of Mathematics, North Carolina State University

Inverse Analyses with Model Reduction

Inverse Analyses with Model Reduction
Author: Vladimir Buljak
Publisher: Springer Science & Business Media
Total Pages: 216
Release: 2011-11-08
Genre: Technology & Engineering
ISBN: 3642227031

In this self-consistent monograph, the author gathers and describes different mathematical techniques and combines all together to form practical procedures for the inverse analyses. It puts together topics coming from mathematical programming, with soft computing and Proper Orthogonal Decomposition, in order to show, in the context of structural analyses, how the things work and what are the main problems one needs to tackle. Throughout the book a number of examples and exercises are worked out in order to make reader practically familiar with discussed topics.

Inverse Problems

Inverse Problems
Author: Mathias Richter
Publisher: Springer Nature
Total Pages: 281
Release: 2021-01-05
Genre: Mathematics
ISBN: 3030593177

This textbook is an introduction to the subject of inverse problems with an emphasis on practical solution methods and applications from geophysics. The treatment is mathematically rigorous, relying on calculus and linear algebra only; familiarity with more advanced mathematical theories like functional analysis is not required. Containing up-to-date methods, this book will provide readers with the tools necessary to compute regularized solutions of inverse problems. A variety of practical examples from geophysics are used to motivate the presentation of abstract mathematical ideas, thus assuring an accessible approach. Beginning with four examples of inverse problems, the opening chapter establishes core concepts, such as formalizing these problems as equations in vector spaces and addressing the key issue of ill-posedness. Chapter Two then moves on to the discretization of inverse problems, which is a prerequisite for solving them on computers. Readers will be well-prepared for the final chapters that present regularized solutions of inverse problems in finite-dimensional spaces, with Chapter Three covering linear problems and Chapter Four studying nonlinear problems. Model problems reflecting scenarios of practical interest in the geosciences, such as inverse gravimetry and full waveform inversion, are fully worked out throughout the book. They are used as test cases to illustrate all single steps of solving inverse problems, up to numerical computations. Five appendices include the mathematical foundations needed to fully understand the material. This second edition expands upon the first, particularly regarding its up-to-date treatment of nonlinear problems. Following the author’s approach, readers will understand the relevant theory and methodology needed to pursue more complex applications. Inverse Problems is ideal for graduate students and researchers interested in geophysics and geosciences.

Inverse system identification with applications in predistortion

Inverse system identification with applications in predistortion
Author: Ylva Jung
Publisher: Linköping University Electronic Press
Total Pages: 224
Release: 2018-12-19
Genre:
ISBN: 9176851710

Models are commonly used to simulate events and processes, and can be constructed from measured data using system identification. The common way is to model the system from input to output, but in this thesis we want to obtain the inverse of the system. Power amplifiers (PAs) used in communication devices can be nonlinear, and this causes interference in adjacent transmitting channels. A prefilter, called predistorter, can be used to invert the effects of the PA, such that the combination of predistorter and PA reconstructs an amplified version of the input signal. In this thesis, the predistortion problem has been investigated for outphasing power amplifiers, where the input signal is decomposed into two branches that are amplified separately by highly efficient nonlinear amplifiers and then recombined. We have formulated a model structure describing the imperfections in an outphasing abbrPA and the matching ideal predistorter. The predistorter can be estimated from measured data in different ways. Here, the initially nonconvex optimization problem has been developed into a convex problem. The predistorters have been evaluated in measurements. The goal with the inverse models in this thesis is to use them in cascade with the systems to reconstruct the original input. It is shown that the problems of identifying a model of a preinverse and a postinverse are fundamentally different. It turns out that the true inverse is not necessarily the best one when noise is present, and that other models and structures can lead to better inversion results. To construct a predistorter (for a PA, for example), a model of the inverse is used, and different methods can be used for the estimation. One common method is to estimate a postinverse, and then using it as a preinverse, making it straightforward to try out different model structures. Another is to construct a model of the system and then use it to estimate a preinverse in a second step. This method identifies the inverse in the setup it will be used, but leads to a complicated optimization problem. A third option is to model the forward system and then invert it. This method can be understood using standard identification theory in contrast to the ones above, but the model is tuned for the forward system, not the inverse. Models obtained using the various methods capture different properties of the system, and a more detailed analysis of the methods is presented for linear time-invariant systems and linear approximations of block-oriented systems. The theory is also illustrated in examples. When a preinverse is used, the input to the system will be changed, and typically the input data will be different than the original input. This is why the estimation of preinverses is more complicated than for postinverses, and one set of experimental data is not enough. Here, we have shown that identifying a preinverse in series with the system in repeated experiments can improve the inversion performance.