Invariants of Knots and 3-manifolds (Kyoto 2001)
Author | : Tomotada Ohtsuki |
Publisher | : |
Total Pages | : 600 |
Release | : 2002 |
Genre | : Knot theory |
ISBN | : |
Download Invariants Of Knots And 3 Manifolds Kyoto 2001 A Collection Of Papers And Problems full books in PDF, epub, and Kindle. Read online free Invariants Of Knots And 3 Manifolds Kyoto 2001 A Collection Of Papers And Problems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Tomotada Ohtsuki |
Publisher | : |
Total Pages | : 600 |
Release | : 2002 |
Genre | : Knot theory |
ISBN | : |
Author | : S. Chmutov |
Publisher | : Cambridge University Press |
Total Pages | : 521 |
Release | : 2012-05-24 |
Genre | : Mathematics |
ISBN | : 1107020832 |
A detailed exposition of the theory with an emphasis on its combinatorial aspects.
Author | : Matthias Aschenbrenner |
Publisher | : Erich Schmidt Verlag GmbH & Co. KG |
Total Pages | : 236 |
Release | : 2015 |
Genre | : Mathematics |
ISBN | : 9783037191545 |
The field of 3-manifold topology has made great strides forward since 1982 when Thurston articulated his influential list of questions. Primary among these is Perelman's proof of the Geometrization Conjecture, but other highlights include the Tameness Theorem of Agol and Calegari-Gabai, the Surface Subgroup Theorem of Kahn-Markovic, the work of Wise and others on special cube complexes, and, finally, Agol's proof of the Virtual Haken Conjecture. This book summarizes all these developments and provides an exhaustive account of the current state of the art of 3-manifold topology, especially focusing on the consequences for fundamental groups of 3-manifolds. As the first book on 3-manifold topology that incorporates the exciting progress of the last two decades, it will be an invaluable resource for researchers in the field who need a reference for these developments. It also gives a fast-paced introduction to this material. Although some familiarity with the fundamental group is recommended, little other previous knowledge is assumed, and the book is accessible to graduate students. The book closes with an extensive list of open questions which will also be of interest to graduate students and established researchers.
Author | : Benson Farb |
Publisher | : American Mathematical Soc. |
Total Pages | : 384 |
Release | : 2006-09-12 |
Genre | : Mathematics |
ISBN | : 0821838385 |
The appearance of mapping class groups in mathematics is ubiquitous. The book presents 23 papers containing problems about mapping class groups, the moduli space of Riemann surfaces, Teichmuller geometry, and related areas. Each paper focusses completely on open problems and directions. The problems range in scope from specific computations, to broad programs. The goal is to have a rich source of problems which have been formulated explicitly and accessibly. The book is divided into four parts. Part I contains problems on the combinatorial and (co)homological group-theoretic aspects of mapping class groups, and the way in which these relate to problems in geometry and topology. Part II concentrates on connections with classification problems in 3-manifold theory, the theory of symplectic 4-manifolds, and algebraic geometry. A wide variety of problems, from understanding billiard trajectories to the classification of Kleinian groups, can be reduced to differential and synthetic geometry problems about moduli space. Such problems and connections are discussed in Part III. Mapping class groups are related, both concretely and philosophically, to a number of other groups, such as braid groups, lattices in semisimple Lie groups, and automorphism groups of free groups. Part IV concentrates on problems surrounding these relationships. This book should be of interest to anyone studying geometry, topology, algebraic geometry or infinite groups. It is meant to provide inspiration for everyone from graduate students to senior researchers.
Author | : Clay Mathematics Institute. Summer School |
Publisher | : American Mathematical Soc. |
Total Pages | : 318 |
Release | : 2006 |
Genre | : Mathematics |
ISBN | : 9780821838457 |
Mathematical gauge theory studies connections on principal bundles, or, more precisely, the solution spaces of certain partial differential equations for such connections. Historically, these equations have come from mathematical physics, and play an important role in the description of the electro-weak and strong nuclear forces. The use of gauge theory as a tool for studying topological properties of four-manifolds was pioneered by the fundamental work of Simon Donaldson in theearly 1980s, and was revolutionized by the introduction of the Seiberg-Witten equations in the mid-1990s. Since the birth of the subject, it has retained its close connection with symplectic topology. The analogy between these two fields of study was further underscored by Andreas Floer's constructionof an infinite-dimensional variant of Morse theory that applies in two a priori different contexts: either to define symplectic invariants for pairs of Lagrangian submanifolds of a symplectic manifold, or to define topological This volume is based on lecture courses and advanced seminars given at the 2004 Clay Mathematics Institute Summer School at the Alfred Renyi Institute of Mathematics in Budapest, Hungary. Several of the authors have added a considerable amount of additional material tothat presented at the school, and the resulting volume provides a state-of-the-art introduction to current research, covering material from Heegaard Floer homology, contact geometry, smooth four-manifold topology, and symplectic four-manifolds. Information for our distributors: Titles in this seriesare copublished with the Clay Mathematics Institute (Cambridge, MA).
Author | : Steven Galbraith |
Publisher | : |
Total Pages | : |
Release | : 2020-12-29 |
Genre | : |
ISBN | : 9781935107071 |
The Algorithmic Number Theory Symposium (ANTS), held biennially since 1994, is the premier international forum for research in computational and algorithmic number theory. ANTS is devoted to algorithmic aspects of number theory, including elementary, algebraic, and analytic number theory, the geometry of numbers, arithmetic algebraic geometry, the theory of finite fields, and cryptography.This volume is the proceedings of the fourteenth ANTS meeting, which took place 29 June to 4 July 2020 via video conference, the plans for holding it at the University of Auckland, New Zealand, having been disrupted by the COVID-19 pandemic. The volume contains revised and edited versions of 24 refereed papers and one invited paper presented at the conference.
Author | : Steven Carlip |
Publisher | : Cambridge University Press |
Total Pages | : 296 |
Release | : 2003-12-04 |
Genre | : Science |
ISBN | : 9780521545884 |
The first comprehensive survey of (2+1)-dimensional quantum gravity - for graduate students and researchers.
Author | : Zhenghan Wang |
Publisher | : American Mathematical Soc. |
Total Pages | : 134 |
Release | : 2010 |
Genre | : Computers |
ISBN | : 0821849301 |
Topological quantum computation is a computational paradigm based on topological phases of matter, which are governed by topological quantum field theories. In this approach, information is stored in the lowest energy states of many-anyon systems and processed by braiding non-abelian anyons. The computational answer is accessed by bringing anyons together and observing the result. Besides its theoretical esthetic appeal, the practical merit of the topological approach lies in its error-minimizing hypothetical hardware: topological phases of matter are fault-avoiding or deaf to most local noises, and unitary gates are implemented with exponential accuracy. Experimental realizations are pursued in systems such as fractional quantum Hall liquids and topological insulators. This book expands on the author's CBMS lectures on knots and topological quantum computing and is intended as a primer for mathematically inclined graduate students. With an emphasis on introducing basic notions and current research, this book gives the first coherent account of the field, covering a wide range of topics: Temperley-Lieb-Jones theory, the quantum circuit model, ribbon fusion category theory, topological quantum field theory, anyon theory, additive approximation of the Jones polynomial, anyonic quantum computing models, and mathematical models of topological phases of matter.