Introductory Functional Analysis With Applications
Download Introductory Functional Analysis With Applications full books in PDF, epub, and Kindle. Read online free Introductory Functional Analysis With Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Erwin Kreyszig |
Publisher | : John Wiley & Sons |
Total Pages | : 706 |
Release | : 1991-01-16 |
Genre | : Mathematics |
ISBN | : 0471504599 |
KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry
Author | : B.D. Reddy |
Publisher | : Springer Science & Business Media |
Total Pages | : 472 |
Release | : 2013-11-27 |
Genre | : Mathematics |
ISBN | : 1461205751 |
Providing an introduction to functional analysis, this text treats in detail its application to boundary-value problems and finite elements, and is distinguished by the fact that abstract concepts are motivated and illustrated wherever possible. It is intended for use by senior undergraduates and graduates in mathematics, the physical sciences and engineering, who may not have been exposed to the conventional prerequisites for a course in functional analysis, such as real analysis. Mature researchers wishing to learn the basic ideas of functional analysis will equally find this useful. Offers a good grounding in those aspects of functional analysis which are most relevant to a proper understanding and appreciation of the mathematical aspects of boundary-value problems and the finite element method.
Author | : Christian Clason |
Publisher | : Springer Nature |
Total Pages | : 166 |
Release | : 2020-11-30 |
Genre | : Mathematics |
ISBN | : 3030527840 |
Functional analysis has become one of the essential foundations of modern applied mathematics in the last decades, from the theory and numerical solution of differential equations, from optimization and probability theory to medical imaging and mathematical image processing. This textbook offers a compact introduction to the theory and is designed to be used during one semester, fitting exactly 26 lectures of 90 minutes each. It ranges from the topological fundamentals recalled from basic lectures on real analysis to spectral theory in Hilbert spaces. Special attention is given to the central results on dual spaces and weak convergence.
Author | : R.E. Edwards |
Publisher | : Courier Corporation |
Total Pages | : 802 |
Release | : 2012-10-25 |
Genre | : Mathematics |
ISBN | : 0486145107 |
"The book contains an enormous amount of information — mathematical, bibliographical and historical — interwoven with some outstanding heuristic discussions." — Mathematical Reviews. In this massive graduate-level study, Emeritus Professor Edwards (Australian National University, Canberra) presents a balanced account of both the abstract theory and the applications of linear functional analysis. Written for readers with a basic knowledge of set theory, general topology, and vector spaces, the book includes an abundance of carefully chosen illustrative examples and excellent exercises at the end of each chapter. Beginning with a chapter of preliminaries on set theory and topology, Dr. Edwards then presents detailed, in-depth discussions of vector spaces and topological vector spaces, the Hahn-Banach theorem (including applications to potential theory, approximation theory, game theory, and other fields) and fixed-point theorems. Subsequent chapters focus on topological duals of certain spaces: radon measures, distribution and linear partial differential equations, open mapping and closed graph theorems, boundedness principles, duality theory, the theory of compact operators and the Krein-Milman theorem and its applications to commutative harmonic analysis. Clearly and concisely written, Dr. Edwards's book offers rewarding reading to mathematicians and physicists with an interest in the important field of functional analysis. Because of the broad scope of its coverage, this volume will be especially valuable to the reader with a basic knowledge of functional analysis who wishes to learn about parts of the subject other than his own specialties. A comprehensive 32-page bibliography supplies a rich source of references to the basic literature.
Author | : Markus Haase |
Publisher | : American Mathematical Society |
Total Pages | : 394 |
Release | : 2014-09-17 |
Genre | : Mathematics |
ISBN | : 0821891715 |
This book introduces functional analysis at an elementary level without assuming any background in real analysis, for example on metric spaces or Lebesgue integration. It focuses on concepts and methods relevant in applied contexts such as variational methods on Hilbert spaces, Neumann series, eigenvalue expansions for compact self-adjoint operators, weak differentiation and Sobolev spaces on intervals, and model applications to differential and integral equations. Beyond that, the final chapters on the uniform boundedness theorem, the open mapping theorem and the Hahn-Banach theorem provide a stepping-stone to more advanced texts. The exposition is clear and rigorous, featuring full and detailed proofs. Many examples illustrate the new notions and results. Each chapter concludes with a large collection of exercises, some of which are referred to in the margin of the text, tailor-made in order to guide the student digesting the new material. Optional sections and chapters supplement the mandatory parts and allow for modular teaching spanning from basic to honors track level.
Author | : Antonio Ambrosetti |
Publisher | : Springer Science & Business Media |
Total Pages | : 203 |
Release | : 2011-07-19 |
Genre | : Mathematics |
ISBN | : 0817681140 |
This self-contained textbook provides the basic, abstract tools used in nonlinear analysis and their applications to semilinear elliptic boundary value problems and displays how various approaches can easily be applied to a range of model cases. Complete with a preliminary chapter, an appendix that includes further results on weak derivatives, and chapter-by-chapter exercises, this book is a practical text for an introductory course or seminar on nonlinear functional analysis.
Author | : Joseph Muscat |
Publisher | : Springer Nature |
Total Pages | : 462 |
Release | : |
Genre | : |
ISBN | : 3031275373 |
Author | : James C. Robinson |
Publisher | : Cambridge University Press |
Total Pages | : 421 |
Release | : 2020-03-12 |
Genre | : Mathematics |
ISBN | : 0521899648 |
Accessible text covering core functional analysis topics in Hilbert and Banach spaces, with detailed proofs and 200 fully-worked exercises.
Author | : Michel Willem |
Publisher | : Springer Nature |
Total Pages | : 259 |
Release | : 2023-01-27 |
Genre | : Mathematics |
ISBN | : 3031091493 |
This textbook presents the principles of functional analysis in a clear and concise way. The first three chapters describe the general notions of distance, integral, and norm, as well as their relations. Fundamental examples are provided in the three chapters that follow: Lebesgue spaces, dual spaces, and Sobolev spaces. Two subsequent chapters develop applications to capacity theory and elliptic problems. In particular, the isoperimetric inequality and the Pólya-Szegő and Faber-Krahn inequalities are proved by purely functional methods. The epilogue contains a sketch of the history of functional analysis in relation to integration and differentiation. Starting from elementary analysis and introducing relevant research, this work is an excellent resource for students in mathematics and applied mathematics. The second edition of Functional Analysis includes several improvements as well as the addition of supplementary material. Specifically, the coverage of advanced calculus and distribution theory has been completely rewritten and expanded. New proofs, theorems, and applications have been added as well for readers to explore.
Author | : Yuli Eidelman |
Publisher | : American Mathematical Soc. |
Total Pages | : 344 |
Release | : 2004 |
Genre | : Mathematics |
ISBN | : 0821836463 |
Introduces the methods and language of functional analysis, including Hilbert spaces, Fredholm theory for compact operators and spectral theory of self-adjoint operators. This work presents the theorems and methods of abstract functional analysis and applications of these methods to Banach algebras and theory of unbounded self-adjoint operators.