Contributions to Operator Theory in Spaces with an Indefinite Metric

Contributions to Operator Theory in Spaces with an Indefinite Metric
Author: Aad Dijksma
Publisher: Birkhäuser
Total Pages: 419
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034888120

This volume is dedicated to Heinz Langer, a leading expert in spectral analysis and its applications, in particular to operators in spaces with an indefinite metric, on the occasion of his 60th birthday. The book begins with his biography and list of publications. It contains a selection of research papers, most of which are devoted to spectral analysis of operators or operator pencils with applications to ordinary and partial differential equations. Other papers deal with time-varying systems, interpolation and factorization problems, and topics from mathematical physics. About half of the papers contain further developments in the theory of operators in spaces with an indefinite metric and treat new applications. The book is of interest to a wide audience of pure and applied mathematicians.

An Introduction to Local Spectral Theory

An Introduction to Local Spectral Theory
Author: K. B. Laursen
Publisher: Oxford University Press
Total Pages: 610
Release: 2000
Genre: Mathematics
ISBN: 9780198523819

Modern local spectral theory is built on the classical spectral theorem, a fundamental result in single-operator theory and Hilbert spaces. This book provides an in-depth introduction to the natural expansion of this fascinating topic of Banach space operator theory. It gives complete coverage of the field, including the fundamental recent work by Albrecht and Eschmeier which provides the full duality theory for Banach space operators. One of its highlights are the many characterizations of decomposable operators, and of other related, important classes of operators, including identifications of distinguished parts, and results on permanence properties of spectra with respect to several types of similarity. Written in a careful and detailed style, it contains numerous examples, many simplified proofs of classical results, extensive references, and open problems, suitable for continued research.

Spectral Theory of Operators in Hilbert Space

Spectral Theory of Operators in Hilbert Space
Author: Kurt O. Friedrichs
Publisher: Springer Science & Business Media
Total Pages: 253
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461263964

The present lectures intend to provide an introduction to the spectral analysis of self-adjoint operators within the framework of Hilbert space theory. The guiding notion in this approach is that of spectral representation. At the same time the notion of function of an operator is emphasized. The formal aspects of these concepts are explained in the first two chapters. Only then is the notion of Hilbert space introduced. The following three chapters concern bounded, completely continuous, and non-bounded operators. Next, simple differential operators are treated as operators in Hilbert space, and the final chapter deals with the perturbation of discrete and continuous spectra. The preparation of the original version of these lecture notes was greatly helped by the assistance of P. Rejto. Various valuable suggestions made by him and by R. Lewis have been incorporated. The present version of the notes contains extensive modifica tions, in particular in the chapters on bounded and unbounded operators. February, 1973 K.O.F. PREFACE TO THE SECOND PRINTING The second printing (1980) is a basically unchanged reprint in which a number of minor errors were corrected. The author wishes to thank Klaus Schmidt (Lausanne) and John Sylvester (New York) for their lists of errors. v TABLE OF CONTENTS I. Spectral Representation 1 1. Three typical problems 1 12 2. Linear space and functional representation.

An Introduction to Spectral Theory

An Introduction to Spectral Theory
Author: Andrei Giniatoulline
Publisher: R.T. Edwards, Inc.
Total Pages: 212
Release: 2005
Genre: Mathematics
ISBN: 9781930217096

A brief and accessible introduction to the spectral theory of linear second order elliptic differential operators. By introducing vital topics of abstract functional analysis where necessary, and using clear and simple proofs, the book develops an elegant presentation of the theory while integrating applications of basic real world problems involving the Laplacian. Suitable for use as a self-contained introduction for beginners or as a one-semester student text; contains some 25 examples and 60 exercises, most with detailed hints.