Contributions to Operator Theory in Spaces with an Indefinite Metric

Contributions to Operator Theory in Spaces with an Indefinite Metric
Author: Aad Dijksma
Publisher: Birkhäuser
Total Pages: 419
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034888120

This volume is dedicated to Heinz Langer, a leading expert in spectral analysis and its applications, in particular to operators in spaces with an indefinite metric, on the occasion of his 60th birthday. The book begins with his biography and list of publications. It contains a selection of research papers, most of which are devoted to spectral analysis of operators or operator pencils with applications to ordinary and partial differential equations. Other papers deal with time-varying systems, interpolation and factorization problems, and topics from mathematical physics. About half of the papers contain further developments in the theory of operators in spaces with an indefinite metric and treat new applications. The book is of interest to a wide audience of pure and applied mathematicians.

A State Space Approach to Canonical Factorization with Applications

A State Space Approach to Canonical Factorization with Applications
Author: Harm Bart
Publisher: Springer Science & Business Media
Total Pages: 419
Release: 2011-02-09
Genre: Mathematics
ISBN: 376438753X

The present book deals with canonical factorization of matrix and operator functions that appear in state space form or that can be transformed into such a form. A unified geometric approach is used. The main results are all expressed explicitly in terms of matrices or operators, which are parameters of the state space representation. The applications concern different classes of convolution equations. A large part the book deals with rational matrix functions only.

Operator Extensions, Interpolation of Functions and Related Topics

Operator Extensions, Interpolation of Functions and Related Topics
Author: A. Gheondea
Publisher: Birkhäuser
Total Pages: 225
Release: 2012-12-06
Genre: Science
ISBN: 303488575X

Since 1976 the Institute of Mathematics of the Romanian Academy (formerly the Department of Mathematics of INCREST) and the Faculty of Mathematics (formerly the Faculty of Sciences) of the University ofTimi~oara have organized several Con ferences on Operator Theory. These Conferences were held yearly in Timi~oara (or in Timi~oara and Herculane) and beginning with 1985 they were held in Bucharest (1985,1986), in Timi~oara (1988) and in Predeal (1990). At the beginning, these Conferences answered the need of a part of the Romanian Mathematical Community ofexploring other forms of survival, after the dissolution of the Institute of Mathematics in 1975. Soon, these meetings evolved to International Conferences with a broad participation and where important results in Operator Theory and Operator Algebras and their interplay with Complex Function Theory, Differential Equations, Mathematical Physics, System Theory, etc. were presented. The 14th Conference on Operator Theory was held between June 1st and June 5th 1992, at the University ofTimi~oara. It was partially supported by the Institute of Mathematics of the Romanian Academy and by the Faculty of Mathematics of the University ofTimi~oara. Another important contribution towards covering the costs of this meeting came from The Soros Foundation for an Open Society. Without this generous help the organizing of this event would be impossible. Since 1980, the Proceedings of OT Conferences were published by Birkhauser Verlag in the series Operator Theory: Advances and Applications. The abstracts of the talks were collected in the Conference Report, published by the University of Timi~oara.

Special Classes of Linear Operators and Other Topics

Special Classes of Linear Operators and Other Topics
Author: G. Arsene
Publisher: Birkhäuser
Total Pages: 312
Release: 2012-12-06
Genre: Science
ISBN: 3034891644

The Operator Theory conferences, organized by the Department of Mathematics of INCREST and the University of Timi~oara, are conceived as a means to promote cooperation and exchange of information between specialists in all areas of operator theory. This volume consists of a careful selec£ion of papers contributed by the participants of the 1986 Conference. They reflect most of the topics dealt with by the modern operator theory, including recent advances in dual operator algebras and the fnvariant subspace problem, operators in indefinite metric spaces, hyponormal, quasi triangular and decomposable operators, various problems in C*- and W*-algebras and so on. The research contracts of the Department of Mathematics of INCREST with the National Council for Science and Technology of Romania provided the means for developing the research activity in mathematics; they represent the generous framework of these meetings, too. It is our pleasure to acknowledge the financial support of UNESCO which also contributed to the success of this meeting. We are indebted to Professor Israel Gohberg for including these Proceedings in the OT Series and for valuable advice in the editing process. Birkhiiuser Verlag was very cooperative in publishing this volume. Camelia Minculescu, Iren Nemethi and Rodica Stoenescu dealt with the dif ficult task of typing the whOle manuscript using a Rank Xerox 860 word processor; we thank them for the excellent job they did.

Encyclopaedia of Mathematics

Encyclopaedia of Mathematics
Author: Michiel Hazewinkel
Publisher: Springer Science & Business Media
Total Pages: 506
Release: 2012-12-06
Genre: Mathematics
ISBN: 940151237X

This ENCYCLOPAEDIA OF MA THEMA TICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.

Introduction to the Spectral Theory of Polynomial Operator Pencils

Introduction to the Spectral Theory of Polynomial Operator Pencils
Author: A. S. Markus
Publisher: American Mathematical Soc.
Total Pages: 256
Release: 2012-09-14
Genre: Education
ISBN: 0821890824

This monograph contains an exposition of the foundations of the spectral theory of polynomial operator pencils acting in a Hilbert space. Spectral problems for polynomial pencils have attracted a steady interest in the last 35 years, mainly because they arise naturally in such diverse areas of mathematical physics as differential equations and boundary value problems, controllable systems, the theory of oscillations and waves, elasticity theory, and hydromechanics. In this book, the author devotes most of his attention to the fundamental results of Keldysh on multiple completeness of the eigenvectors and associate vectors of a pencil, and on the asymptotic behavior of its eigenvalues and generalizations of these results. The author also presents various theorems on spectral factorization of pencils which grew out of known results of M. G. Krein and Heinz Langer. A large portion of the book involves the theory of selfadjoint pencils, an area having numerous applications. Intended for mathematicians, researchers in mechanics, and theoretical physicists interested in spectral theory and its applications, the book assumes a familiarity with the fundamentals of spectral theory of operators acting in a Hilbert space.