Introduction to the Algebraic Theory of Invariants of Differential Equations

Introduction to the Algebraic Theory of Invariants of Differential Equations
Author: Konstantin Sergeevich Sibirskiĭ
Publisher: Manchester University Press
Total Pages: 210
Release: 1988
Genre: Mathematics
ISBN: 9780719026690

Considers polynominal invariants & comitants of autonomous systems of differential equations with right-hand sides relative to various transformation groups of phase space. Contains an in-depth discussion of the two-dimensional system with quadratic right-hand sides. Features numerous applications to the qualitative theory of differential equations.

The Theory of Algebraic Number Fields

The Theory of Algebraic Number Fields
Author: David Hilbert
Publisher: Springer Science & Business Media
Total Pages: 360
Release: 2013-03-14
Genre: Mathematics
ISBN: 3662035456

A translation of Hilberts "Theorie der algebraischen Zahlkörper" best known as the "Zahlbericht", first published in 1897, in which he provides an elegantly integrated overview of the development of algebraic number theory up to the end of the nineteenth century. The Zahlbericht also provided a firm foundation for further research in the theory, and can be seen as the starting point for all twentieth century investigations into the subject, as well as reciprocity laws and class field theory. This English edition further contains an introduction by F. Lemmermeyer and N. Schappacher.

Galois Theory of Linear Differential Equations

Galois Theory of Linear Differential Equations
Author: Marius van der Put
Publisher: Springer Science & Business Media
Total Pages: 446
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642557503

From the reviews: "This is a great book, which will hopefully become a classic in the subject of differential Galois theory. [...] the specialist, as well as the novice, have long been missing an introductory book covering also specific and advanced research topics. This gap is filled by the volume under review, and more than satisfactorily." Mathematical Reviews

Lectures on Invariant Theory

Lectures on Invariant Theory
Author: Igor Dolgachev
Publisher: Cambridge University Press
Total Pages: 244
Release: 2003-08-07
Genre: Mathematics
ISBN: 9780521525480

The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.

Arithmetic Differential Equations

Arithmetic Differential Equations
Author: Alexandru Buium
Publisher: American Mathematical Soc.
Total Pages: 346
Release: 2005
Genre: Mathematics
ISBN: 0821838628

For most of the book the only prerequisites are the basic facts of algebraic geometry and number theory."--BOOK JACKET.

Algebraic Theory of Locally Nilpotent Derivations

Algebraic Theory of Locally Nilpotent Derivations
Author: Gene Freudenburg
Publisher: Springer Science & Business Media
Total Pages: 266
Release: 2007-07-18
Genre: Mathematics
ISBN: 3540295232

This book explores the theory and application of locally nilpotent derivations. It provides a unified treatment of the subject, beginning with sixteen First Principles on which the entire theory is based. These are used to establish classical results, such as Rentschler’s Theorem for the plane, right up to the most recent results, such as Makar-Limanov’s Theorem for locally nilpotent derivations of polynomial rings. The book also includes a wealth of pexamples and open problems.

Algebraic Approach to Differential Equations

Algebraic Approach to Differential Equations
Author: D?ng Tr ng Lˆ
Publisher: World Scientific
Total Pages: 320
Release: 2010
Genre: Mathematics
ISBN: 9814273244

Mixing elementary results and advanced methods, Algebraic Approach to Differential Equations aims to accustom differential equation specialists to algebraic methods in this area of interest. It presents material from a school organized by The Abdus Salam International Centre for Theoretical Physics (ICTP), the Bibliotheca Alexandrina, and the International Centre for Pure and Applied Mathematics (CIMPA).