Introduction To Stochastic Differential Equations With Applications To Modelling In Biology And Finance
Download Introduction To Stochastic Differential Equations With Applications To Modelling In Biology And Finance full books in PDF, epub, and Kindle. Read online free Introduction To Stochastic Differential Equations With Applications To Modelling In Biology And Finance ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Carlos A. Braumann |
Publisher | : John Wiley & Sons |
Total Pages | : 303 |
Release | : 2019-03-08 |
Genre | : Mathematics |
ISBN | : 1119166071 |
A comprehensive introduction to the core issues of stochastic differential equations and their effective application Introduction to Stochastic Differential Equations with Applications to Modelling in Biology and Finance offers a comprehensive examination to the most important issues of stochastic differential equations and their applications. The author — a noted expert in the field — includes myriad illustrative examples in modelling dynamical phenomena subject to randomness, mainly in biology, bioeconomics and finance, that clearly demonstrate the usefulness of stochastic differential equations in these and many other areas of science and technology. The text also features real-life situations with experimental data, thus covering topics such as Monte Carlo simulation and statistical issues of estimation, model choice and prediction. The book includes the basic theory of option pricing and its effective application using real-life. The important issue of which stochastic calculus, Itô or Stratonovich, should be used in applications is dealt with and the associated controversy resolved. Written to be accessible for both mathematically advanced readers and those with a basic understanding, the text offers a wealth of exercises and examples of application. This important volume: Contains a complete introduction to the basic issues of stochastic differential equations and their effective application Includes many examples in modelling, mainly from the biology and finance fields Shows how to: Translate the physical dynamical phenomenon to mathematical models and back, apply with real data, use the models to study different scenarios and understand the effect of human interventions Conveys the intuition behind the theoretical concepts Presents exercises that are designed to enhance understanding Offers a supporting website that features solutions to exercises and R code for algorithm implementation Written for use by graduate students, from the areas of application or from mathematics and statistics, as well as academics and professionals wishing to study or to apply these models, Introduction to Stochastic Differential Equations with Applications to Modelling in Biology and Finance is the authoritative guide to understanding the issues of stochastic differential equations and their application.
Author | : Carlos A. Braumann |
Publisher | : John Wiley & Sons |
Total Pages | : 299 |
Release | : 2019-04-29 |
Genre | : Mathematics |
ISBN | : 1119166063 |
A comprehensive introduction to the core issues of stochastic differential equations and their effective application Introduction to Stochastic Differential Equations with Applications to Modelling in Biology and Finance offers a comprehensive examination to the most important issues of stochastic differential equations and their applications. The author — a noted expert in the field — includes myriad illustrative examples in modelling dynamical phenomena subject to randomness, mainly in biology, bioeconomics and finance, that clearly demonstrate the usefulness of stochastic differential equations in these and many other areas of science and technology. The text also features real-life situations with experimental data, thus covering topics such as Monte Carlo simulation and statistical issues of estimation, model choice and prediction. The book includes the basic theory of option pricing and its effective application using real-life. The important issue of which stochastic calculus, Itô or Stratonovich, should be used in applications is dealt with and the associated controversy resolved. Written to be accessible for both mathematically advanced readers and those with a basic understanding, the text offers a wealth of exercises and examples of application. This important volume: Contains a complete introduction to the basic issues of stochastic differential equations and their effective application Includes many examples in modelling, mainly from the biology and finance fields Shows how to: Translate the physical dynamical phenomenon to mathematical models and back, apply with real data, use the models to study different scenarios and understand the effect of human interventions Conveys the intuition behind the theoretical concepts Presents exercises that are designed to enhance understanding Offers a supporting website that features solutions to exercises and R code for algorithm implementation Written for use by graduate students, from the areas of application or from mathematics and statistics, as well as academics and professionals wishing to study or to apply these models, Introduction to Stochastic Differential Equations with Applications to Modelling in Biology and Finance is the authoritative guide to understanding the issues of stochastic differential equations and their application.
Author | : E. Allen |
Publisher | : Springer Science & Business Media |
Total Pages | : 239 |
Release | : 2007-03-08 |
Genre | : Mathematics |
ISBN | : 1402059531 |
This book explains a procedure for constructing realistic stochastic differential equation models for randomly varying systems in biology, chemistry, physics, engineering, and finance. Introductory chapters present the fundamental concepts of random variables, stochastic processes, stochastic integration, and stochastic differential equations. These concepts are explained in a Hilbert space setting which unifies and simplifies the presentation.
Author | : Michael J. Panik |
Publisher | : John Wiley & Sons |
Total Pages | : 362 |
Release | : 2017-03-15 |
Genre | : Mathematics |
ISBN | : 1119377404 |
A beginner’s guide to stochastic growth modeling The chief advantage of stochastic growth models over deterministic models is that they combine both deterministic and stochastic elements of dynamic behaviors, such as weather, natural disasters, market fluctuations, and epidemics. This makes stochastic modeling a powerful tool in the hands of practitioners in fields for which population growth is a critical determinant of outcomes. However, the background requirements for studying SDEs can be daunting for those who lack the rigorous course of study received by math majors. Designed to be accessible to readers who have had only a few courses in calculus and statistics, this book offers a comprehensive review of the mathematical essentials needed to understand and apply stochastic growth models. In addition, the book describes deterministic and stochastic applications of population growth models including logistic, generalized logistic, Gompertz, negative exponential, and linear. Ideal for students and professionals in an array of fields including economics, population studies, environmental sciences, epidemiology, engineering, finance, and the biological sciences, Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling: • Provides precise definitions of many important terms and concepts and provides many solved example problems • Highlights the interpretation of results and does not rely on a theorem-proof approach • Features comprehensive chapters addressing any background deficiencies readers may have and offers a comprehensive review for those who need a mathematics refresher • Emphasizes solution techniques for SDEs and their practical application to the development of stochastic population models An indispensable resource for students and practitioners with limited exposure to mathematics and statistics, Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling is an excellent fit for advanced undergraduates and beginning graduate students, as well as practitioners who need a gentle introduction to SDEs. Michael J. Panik, PhD, is Professor in the Department of Economics, Barney School of Business and Public Administration at the University of Hartford in Connecticut. He received his PhD in Economics from Boston College and is a member of the American Mathematical Society, The American Statistical Association, and The Econometric Society.
Author | : Thomas Mikosch |
Publisher | : World Scientific |
Total Pages | : 230 |
Release | : 1998 |
Genre | : Mathematics |
ISBN | : 9789810235437 |
Modelling with the Ito integral or stochastic differential equations has become increasingly important in various applied fields, including physics, biology, chemistry and finance. However, stochastic calculus is based on a deep mathematical theory. This book is suitable for the reader without a deep mathematical background. It gives an elementary introduction to that area of probability theory, without burdening the reader with a great deal of measure theory. Applications are taken from stochastic finance. In particular, the Black -- Scholes option pricing formula is derived. The book can serve as a text for a course on stochastic calculus for non-mathematicians or as elementary reading material for anyone who wants to learn about Ito calculus and/or stochastic finance.
Author | : Simo Särkkä |
Publisher | : Cambridge University Press |
Total Pages | : 327 |
Release | : 2019-05-02 |
Genre | : Business & Economics |
ISBN | : 1316510085 |
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Author | : Bernt Oksendal |
Publisher | : Springer Science & Business Media |
Total Pages | : 218 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 3662130505 |
These notes are based on a postgraduate course I gave on stochastic differential equations at Edinburgh University in the spring 1982. No previous knowledge about the subject was assumed, but the presen tation is based on some background in measure theory. There are several reasons why one should learn more about stochastic differential equations: They have a wide range of applica tions outside mathematics, there are many fruitful connections to other mathematical disciplines and the subject has a rapidly develop ing life of its own as a fascinating research field with many interesting unanswered questions. Unfortunately most of the literature about stochastic differential equations seems to place so much emphasis on rigor and complete ness that is scares many nonexperts away. These notes are an attempt to approach the subject from the nonexpert point of view: Not knowing anything (except rumours, maybe) about a subject to start with, what would I like to know first of all? My answer would be: 1) In what situations does the subject arise? 2) What are its essential features? 3) What are the applications and the connections to other fields? I would not be so interested in the proof of the most general case, but rather in an easier proof of a special case, which may give just as much of the basic idea in the argument. And I would be willing to believe some basic results without proof (at first stage, anyway) in order to have time for some more basic applications.
Author | : Vincenzo Capasso |
Publisher | : Springer Science & Business Media |
Total Pages | : 348 |
Release | : 2008-01-03 |
Genre | : Mathematics |
ISBN | : 0817644288 |
This concisely written book is a rigorous and self-contained introduction to the theory of continuous-time stochastic processes. Balancing theory and applications, the authors use stochastic methods and concrete examples to model real-world problems from engineering, biomathematics, biotechnology, and finance. Suitable as a textbook for graduate or advanced undergraduate courses, the work may also be used for self-study or as a reference. The book will be of interest to students, pure and applied mathematicians, and researchers or practitioners in mathematical finance, biomathematics, physics, and engineering.
Author | : Howard M. Taylor |
Publisher | : Academic Press |
Total Pages | : 410 |
Release | : 2014-05-10 |
Genre | : Mathematics |
ISBN | : 1483269272 |
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Author | : Tusheng Zhang |
Publisher | : World Scientific |
Total Pages | : 465 |
Release | : 2012 |
Genre | : Business & Economics |
ISBN | : 9814383589 |
This volume is a collection of solicited and refereed articles from distinguished researchers across the field of stochastic analysis and its application to finance. The articles represent new directions and newest developments in this exciting and fast growing area. The covered topics range from Markov processes, backward stochastic differential equations, stochastic partial differential equations, stochastic control, potential theory, functional inequalities, optimal stopping, portfolio selection, to risk measure and risk theory. It will be a very useful book for young researchers who want to learn about the research directions in the area, as well as experienced researchers who want to know about the latest developments in the area of stochastic analysis and mathematical finance. Sample Chapter(s). Editorial Foreword (58 KB). Chapter 1: Non-Linear Evolution Equations Driven by Rough Paths (399 KB). Contents: Non-Linear Evolution Equations Driven by Rough Paths (Thomas Cass, Zhongmin Qian and Jan Tudor); Optimal Stopping Times with Different Information Levels and with Time Uncertainty (Arijit Chakrabarty and Xin Guo); Finite Horizon Optimal Investment and Consumption with CARA Utility and Proportional Transaction Costs (Yingshan Chen, Min Dai and Kun Zhao); MUniform Integrability of Exponential Martingales and Spectral Bounds of Non-Local Feynman-Kac Semigroups (Zhen-Qing Chen); Continuous-Time Mean-Variance Portfolio Selection with Finite Transactions (Xiangyu Cui, Jianjun Gao and Duan Li); Quantifying Model Uncertainties in the Space of Probability Measures (J Duan, T Gao and G He); A PDE Approach to Multivariate Risk Theory (Robert J Elliott, Tak Kuen Siu and Hailiang Yang); Stochastic Analysis on Loop Groups (Shizan Fang); Existence and Stability of Measure Solutions for BSDE with Generators of Quadratic Growth (Alexander Fromm, Peter Imkeller and Jianing Zhang); Convex Capital Requirements for Large Portfolios (Hans FAllmer and Thomas Knispel); The Mixed Equilibrium of Insider Trading in the Market with Rational Expected Price (Fuzhou Gong and Hong Liu); Some Results on Backward Stochastic Differential Equations Driven by Fractional Brownian Motions (Yaozhong Hu, Daniel Ocone and Jian Song); Potential Theory of Subordinate Brownian Motions Revisited (Panki Kim, Renming Song and Zoran Vondraiek); Research on Social Causes of the Financial Crisis (Steven Kou); Wick Formulas and Inequalities for the Quaternion Gaussian and -Permanental Variables (Wenbo V Li and Ang Wei); Further Study on Web Markov Skeleton Processes (Yuting Liu, Zhi-Ming Ma and Chuan Zhou); MLE of Parameters in the Drifted Brownian Motion and Its Error (Lemee Nakamura and Weian Zheng); Optimal Partial Information Control of SPDEs with Delay and Time-Advanced Backward SPDEs (Bernt yksendal, Agn s Sulem and Tusheng Zhang); Simulation of Diversified Portfolios in Continuous Financial Markets (Eckhard Platen and Renata Rendek); Coupling and Applications (Feng-Yu Wang); SDEs and a Generalised Burgers Equation (Jiang-Lun Wu and Wei Yang); Mean-Variance Hedging in the Discontinuous Case (Jianming Xia). Readership: Graduates and researchers in stochatic analysis and mathematical finance.