Introduction to Ordinary Differential Equations with Mathematica®

Introduction to Ordinary Differential Equations with Mathematica®
Author: Alfred Gray
Publisher: Springer
Total Pages: 530
Release: 1998-06-01
Genre: Mathematics
ISBN: 9780387982328

The purpose of this companion volume to our text is to provide instructors (and eventu ally students) with some additional information to ease the learning process while further documenting the implementations of Mathematica and ODE. In an ideal world this volume would not be necessary, since we have systematically worked to make the text unambiguous and directly useful, by providing in the text worked examples of every technique which is discussed at the theoretical level. However, in our teaching we have found that it is helpful to have further documentation of the various solution techniques introduced in the text. The subject of differential equations is particularly well-suited to self-study, since one can always verify by hand calculation whether or not a given proposed solution is a bona fide solution of the differential equation and initial conditions. Accordingly, we have not reproduced the steps of the verification process in every case, rather content with the illustration of some basic cases of verification in the text. As we state there, students are strongly encouraged to verify that the proposed solution indeed satisfies the requisite equation and supplementary conditions.

Differential Equations with Mathematica

Differential Equations with Mathematica
Author: Martha L. Abell
Publisher: AP Professional
Total Pages: 846
Release: 1997
Genre: Computers
ISBN:

The second edition of this groundbreaking book integrates new applications from a variety of fields, especially biology, physics, and engineering. The new handbook is also completely compatible with Mathematica version 3.0 and is a perfect introduction for Mathematica beginners. The CD-ROM contains built-in commands that let the users solve problems directly using graphical solutions.

Differential Equations

Differential Equations
Author: Clay C. Ross
Publisher: Springer Science & Business Media
Total Pages: 445
Release: 2013-03-09
Genre: Mathematics
ISBN: 1475739494

The first edition (94301-3) was published in 1995 in TIMS and had 2264 regular US sales, 928 IC, and 679 bulk. This new edition updates the text to Mathematica 5.0 and offers a more extensive treatment of linear algebra. It has been thoroughly revised and corrected throughout.

Ordinary Differential Equations

Ordinary Differential Equations
Author: Kenneth B. Howell
Publisher: CRC Press
Total Pages: 907
Release: 2019-12-06
Genre: Mathematics
ISBN: 1000701956

The Second Edition of Ordinary Differential Equations: An Introduction to the Fundamentals builds on the successful First Edition. It is unique in its approach to motivation, precision, explanation and method. Its layered approach offers the instructor opportunity for greater flexibility in coverage and depth. Students will appreciate the author’s approach and engaging style. Reasoning behind concepts and computations motivates readers. New topics are introduced in an easily accessible manner before being further developed later. The author emphasizes a basic understanding of the principles as well as modeling, computation procedures and the use of technology. The students will further appreciate the guides for carrying out the lengthier computational procedures with illustrative examples integrated into the discussion. Features of the Second Edition: Emphasizes motivation, a basic understanding of the mathematics, modeling and use of technology A layered approach that allows for a flexible presentation based on instructor's preferences and students’ abilities An instructor’s guide suggesting how the text can be applied to different courses New chapters on more advanced numerical methods and systems (including the Runge-Kutta method and the numerical solution of second- and higher-order equations) Many additional exercises, including two "chapters" of review exercises for first- and higher-order differential equations An extensive on-line solution manual About the author: Kenneth B. Howell earned bachelor’s degrees in both mathematics and physics from Rose-Hulman Institute of Technology, and master’s and doctoral degrees in mathematics from Indiana University. For more than thirty years, he was a professor in the Department of Mathematical Sciences of the University of Alabama in Huntsville. Dr. Howell published numerous research articles in applied and theoretical mathematics in prestigious journals, served as a consulting research scientist for various companies and federal agencies in the space and defense industries, and received awards from the College and University for outstanding teaching. He is also the author of Principles of Fourier Analysis, Second Edition (Chapman & Hall/CRC, 2016).

Ordinary Differential Equations

Ordinary Differential Equations
Author: Morris Tenenbaum
Publisher: Courier Corporation
Total Pages: 852
Release: 1985-10-01
Genre: Mathematics
ISBN: 0486649407

Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.

Partial Differential Equations with Mathematica

Partial Differential Equations with Mathematica
Author: Dimitri Dimitrievich Vvedensky
Publisher: Addison Wesley Publishing Company
Total Pages: 486
Release: 1993
Genre: Computers
ISBN:

An introduction to linear and nonlinear partial differential equations with extensive use of the popular computational mathematics computer program, Mathematica, to illustrate techniques and solutions and to provide examples that in many cases would not be practical otherwise. No prior knowledge of

Introduction to Mathematica® with Applications

Introduction to Mathematica® with Applications
Author: Marian Mureşan
Publisher: Springer
Total Pages: 274
Release: 2017-02-21
Genre: Computers
ISBN: 3319520032

Starting with an introduction to the numerous features of Mathematica®, this book continues with more complex material. It provides the reader with lots of examples and illustrations of how the benefits of Mathematica® can be used. Composed of eleven chapters, it includes the following: A chapter on several sorting algorithms Functions (planar and solid) with many interesting examples Ordinary differential equations Advantages of Mathematica® dealing with the Pi number The power of Mathematica® working with optimal control problems Introduction to Mathematica® with Applications will appeal to researchers, professors and students requiring a computational tool.

Ordinary Differential Equations and Dynamical Systems

Ordinary Differential Equations and Dynamical Systems
Author: Gerald Teschl
Publisher: American Mathematical Society
Total Pages: 370
Release: 2024-01-12
Genre: Mathematics
ISBN: 147047641X

This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

Symmetry Analysis of Differential Equations with Mathematica®

Symmetry Analysis of Differential Equations with Mathematica®
Author: Gerd Baumann
Publisher: Springer Science & Business Media
Total Pages: 532
Release: 2013-11-21
Genre: Mathematics
ISBN: 1461221102

The first book to explicitly use Mathematica so as to allow researchers and students to more easily compute and solve almost any kind of differential equation using Lie's theory. Previously time-consuming and cumbersome calculations are now much more easily and quickly performed using the Mathematica computer algebra software. The material in this book, and on the accompanying CD-ROM, will be of interest to a broad group of scientists, mathematicians and engineers involved in dealing with symmetry analysis of differential equations. Each section of the book starts with a theoretical discussion of the material, then shows the application in connection with Mathematica. The cross-platform CD-ROM contains Mathematica (version 3.0) notebooks which allow users to directly interact with the code presented within the book. In addition, the author's proprietary "MathLie" software is included, so users can readily learn to use this powerful tool in regard to performing algebraic computations.