Introduction To Natural Language Processing
Download Introduction To Natural Language Processing full books in PDF, epub, and Kindle. Read online free Introduction To Natural Language Processing ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Jacob Eisenstein |
Publisher | : MIT Press |
Total Pages | : 536 |
Release | : 2019-10-01 |
Genre | : Computers |
ISBN | : 0262354578 |
A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques. This textbook provides a technical perspective on natural language processing—methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The second section introduces structured representations of language, including sequences, trees, and graphs. The third section explores different approaches to the representation and analysis of linguistic meaning, ranging from formal logic to neural word embeddings. The final section offers chapter-length treatments of three transformative applications of natural language processing: information extraction, machine translation, and text generation. End-of-chapter exercises include both paper-and-pencil analysis and software implementation. The text synthesizes and distills a broad and diverse research literature, linking contemporary machine learning techniques with the field's linguistic and computational foundations. It is suitable for use in advanced undergraduate and graduate-level courses and as a reference for software engineers and data scientists. Readers should have a background in computer programming and college-level mathematics. After mastering the material presented, students will have the technical skill to build and analyze novel natural language processing systems and to understand the latest research in the field.
Author | : Dan Jurafsky |
Publisher | : Pearson Education India |
Total Pages | : 912 |
Release | : 2000-09 |
Genre | : |
ISBN | : 9788131716724 |
Author | : Sowmya Vajjala |
Publisher | : O'Reilly Media |
Total Pages | : 455 |
Release | : 2020-06-17 |
Genre | : Computers |
ISBN | : 149205402X |
Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as healthcare, social media, and retail. With this book, you’ll: Understand the wide spectrum of problem statements, tasks, and solution approaches within NLP Implement and evaluate different NLP applications using machine learning and deep learning methods Fine-tune your NLP solution based on your business problem and industry vertical Evaluate various algorithms and approaches for NLP product tasks, datasets, and stages Produce software solutions following best practices around release, deployment, and DevOps for NLP systems Understand best practices, opportunities, and the roadmap for NLP from a business and product leader’s perspective
Author | : Ankur A. Patel |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 336 |
Release | : 2021-05-12 |
Genre | : Computers |
ISBN | : 1492062545 |
NLP has exploded in popularity over the last few years. But while Google, Facebook, OpenAI, and others continue to release larger language models, many teams still struggle with building NLP applications that live up to the hype. This hands-on guide helps you get up to speed on the latest and most promising trends in NLP. With a basic understanding of machine learning and some Python experience, you'll learn how to build, train, and deploy models for real-world applications in your organization. Authors Ankur Patel and Ajay Uppili Arasanipalai guide you through the process using code and examples that highlight the best practices in modern NLP. Use state-of-the-art NLP models such as BERT and GPT-3 to solve NLP tasks such as named entity recognition, text classification, semantic search, and reading comprehension Train NLP models with performance comparable or superior to that of out-of-the-box systems Learn about Transformer architecture and modern tricks like transfer learning that have taken the NLP world by storm Become familiar with the tools of the trade, including spaCy, Hugging Face, and fast.ai Build core parts of the NLP pipeline--including tokenizers, embeddings, and language models--from scratch using Python and PyTorch Take your models out of Jupyter notebooks and learn how to deploy, monitor, and maintain them in production
Author | : Clive Matthews |
Publisher | : Routledge |
Total Pages | : 319 |
Release | : 2016-07-01 |
Genre | : Language Arts & Disciplines |
ISBN | : 1317898346 |
Research into Natural Language Processing - the use of computers to process language - has developed over the last couple of decades into one of the most vigorous and interesting areas of current work on language and communication. This book introduces the subject through the discussion and development of various computer programs which illustrate some of the basic concepts and techniques in the field. The programming language used is Prolog, which is especially well-suited for Natural Language Processing and those with little or no background in computing. Following the general introduction, the first section of the book presents Prolog, and the following chapters illustrate how various Natural Language Processing programs may be written using this programming language. Since it is assumed that the reader has no previous experience in programming, great care is taken to provide a simple yet comprehensive introduction to Prolog. Due to the 'user friendly' nature of Prolog, simple yet effective programs may be written from an early stage. The reader is gradually introduced to various techniques for syntactic processing, ranging from Finite State Network recognisors to Chart parsers. An integral element of the book is the comprehensive set of exercises included in each chapter as a means of cementing the reader's understanding of each topic. Suggested answers are also provided. An Introduction to Natural Language Processing Through Prolog is an excellent introduction to the subject for students of linguistics and computer science, and will be especially useful for those with no background in the subject.
Author | : Christopher Manning |
Publisher | : MIT Press |
Total Pages | : 719 |
Release | : 1999-05-28 |
Genre | : Language Arts & Disciplines |
ISBN | : 0262303795 |
Statistical approaches to processing natural language text have become dominant in recent years. This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.
Author | : Nizar Y. Habash |
Publisher | : Morgan & Claypool Publishers |
Total Pages | : 186 |
Release | : 2010 |
Genre | : Computers |
ISBN | : 1598297953 |
This book provides system developers and researchers in natural language processing and computational linguistics with the necessary background information for working with the Arabic language. The goal is to introduce Arabic linguistic phenomena and review the state-of-the-art in Arabic processing. The book discusses Arabic script, phonology, orthography, morphology, syntax and semantics, with a final chapter on machine translation issues. The chapter sizes correspond more or less to what is linguistically distinctive about Arabic, with morphology getting the lion's share, followed by Arabic script. No previous knowledge of Arabic is needed. This book is designed for computer scientists and linguists alike. The focus of the book is on Modern Standard Arabic; however, notes on practical issues related to Arabic dialects and languages written in the Arabic script are presented in different chapters. Table of Contents: What is "Arabic"? / Arabic Script / Arabic Phonology and Orthography / Arabic Morphology / Computational Morphology Tasks / Arabic Syntax / A Note on Arabic Semantics / A Note on Arabic and Machine Translation
Author | : Steven Bird |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 506 |
Release | : 2009-06-12 |
Genre | : Computers |
ISBN | : 0596555717 |
This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.
Author | : Yue Zhang |
Publisher | : Cambridge University Press |
Total Pages | : 487 |
Release | : 2021-01-07 |
Genre | : Computers |
ISBN | : 1108420214 |
This undergraduate textbook introduces essential machine learning concepts in NLP in a unified and gentle mathematical framework.
Author | : Yuli Vasiliev |
Publisher | : No Starch Press |
Total Pages | : 217 |
Release | : 2020-04-28 |
Genre | : Computers |
ISBN | : 171850053X |
An introduction to natural language processing with Python using spaCy, a leading Python natural language processing library. Natural Language Processing with Python and spaCy will show you how to create NLP applications like chatbots, text-condensing scripts, and order-processing tools quickly and easily. You'll learn how to leverage the spaCy library to extract meaning from text intelligently; how to determine the relationships between words in a sentence (syntactic dependency parsing); identify nouns, verbs, and other parts of speech (part-of-speech tagging); and sort proper nouns into categories like people, organizations, and locations (named entity recognizing). You'll even learn how to transform statements into questions to keep a conversation going. You'll also learn how to: • Work with word vectors to mathematically find words with similar meanings (Chapter 5) • Identify patterns within data using spaCy's built-in displaCy visualizer (Chapter 7) • Automatically extract keywords from user input and store them in a relational database (Chapter 9) • Deploy a chatbot app to interact with users over the internet (Chapter 11) "Try This" sections in each chapter encourage you to practice what you've learned by expanding the book's example scripts to handle a wider range of inputs, add error handling, and build professional-quality applications. By the end of the book, you'll be creating your own NLP applications with Python and spaCy.