Introduction To Matrix Theory
Download Introduction To Matrix Theory full books in PDF, epub, and Kindle. Read online free Introduction To Matrix Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Arindama Singh |
Publisher | : Springer Nature |
Total Pages | : 199 |
Release | : 2021-08-16 |
Genre | : Mathematics |
ISBN | : 303080481X |
This book is designed to serve as a textbook for courses offered to undergraduate and postgraduate students enrolled in Mathematics. Using elementary row operations and Gram-Schmidt orthogonalization as basic tools the text develops characterization of equivalence and similarity, and various factorizations such as rank factorization, OR-factorization, Schurtriangularization, Diagonalization of normal matrices, Jordan decomposition, singular value decomposition, and polar decomposition. Along with Gauss-Jordan elimination for linear systems, it also discusses best approximations and least-squares solutions. The book includes norms on matrices as a means to deal with iterative solutions of linear systems and exponential of a matrix. The topics in the book are dealt with in a lively manner. Each section of the book has exercises to reinforce the concepts, and problems have been added at the end of each chapter. Most of these problems are theoretical, and they do not fit into the running text linearly. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in senior undergraduate and beginning postgraduate mathematics courses.
Author | : Fumio Hiai |
Publisher | : Springer Science & Business Media |
Total Pages | : 337 |
Release | : 2014-02-06 |
Genre | : Mathematics |
ISBN | : 3319041509 |
Matrices can be studied in different ways. They are a linear algebraic structure and have a topological/analytical aspect (for example, the normed space of matrices) and they also carry an order structure that is induced by positive semidefinite matrices. The interplay of these closely related structures is an essential feature of matrix analysis. This book explains these aspects of matrix analysis from a functional analysis point of view. After an introduction to matrices and functional analysis, it covers more advanced topics such as matrix monotone functions, matrix means, majorization and entropies. Several applications to quantum information are also included. Introduction to Matrix Analysis and Applications is appropriate for an advanced graduate course on matrix analysis, particularly aimed at studying quantum information. It can also be used as a reference for researchers in quantum information, statistics, engineering and economics.
Author | : Otto Schreier |
Publisher | : Courier Corporation |
Total Pages | : 402 |
Release | : 2011-01-01 |
Genre | : Mathematics |
ISBN | : 0486482200 |
"This unique text provides students with a basic course in both calculus and analytic geometry. It promotes an intuitive approach to calculus and emphasizes algebraic concepts. Minimal prerequisites. Numerous exercises. 1951 edition"--
Author | : Giacomo Livan |
Publisher | : Springer |
Total Pages | : 122 |
Release | : 2018-01-16 |
Genre | : Science |
ISBN | : 3319708856 |
Modern developments of Random Matrix Theory as well as pedagogical approaches to the standard core of the discipline are surprisingly hard to find in a well-organized, readable and user-friendly fashion. This slim and agile book, written in a pedagogical and hands-on style, without sacrificing formal rigor fills this gap. It brings Ph.D. students in Physics, as well as more senior practitioners, through the standard tools and results on random matrices, with an eye on most recent developments that are not usually covered in introductory texts. The focus is mainly on random matrices with real spectrum.The main guiding threads throughout the book are the Gaussian Ensembles. In particular, Wigner’s semicircle law is derived multiple times to illustrate several techniques (e.g., Coulomb gas approach, replica theory).Most chapters are accompanied by Matlab codes (stored in an online repository) to guide readers through the numerical check of most analytical results.
Author | : Fuzhen Zhang |
Publisher | : Springer Science & Business Media |
Total Pages | : 290 |
Release | : 2013-03-14 |
Genre | : Mathematics |
ISBN | : 1475757972 |
This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.
Author | : Robert R. Stoll |
Publisher | : Courier Corporation |
Total Pages | : 290 |
Release | : 2012-10-17 |
Genre | : Mathematics |
ISBN | : 0486623181 |
Advanced undergraduate and first-year graduate students have long regarded this text as one of the best available works on matrix theory in the context of modern algebra. Teachers and students will find it particularly suited to bridging the gap between ordinary undergraduate mathematics and completely abstract mathematics. The first five chapters treat topics important to economics, psychology, statistics, physics, and mathematics. Subjects include equivalence relations for matrixes, postulational approaches to determinants, and bilinear, quadratic, and Hermitian forms in their natural settings. The final chapters apply chiefly to students of engineering, physics, and advanced mathematics. They explore groups and rings, canonical forms for matrixes with respect to similarity via representations of linear transformations, and unitary and Euclidean vector spaces. Numerous examples appear throughout the text.
Author | : Joel N. Franklin |
Publisher | : Courier Corporation |
Total Pages | : 319 |
Release | : 2012-07-31 |
Genre | : Mathematics |
ISBN | : 0486136388 |
Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.
Author | : Nathaniel Johnston |
Publisher | : Springer Nature |
Total Pages | : 482 |
Release | : 2021-05-19 |
Genre | : Mathematics |
ISBN | : 3030528111 |
This textbook emphasizes the interplay between algebra and geometry to motivate the study of linear algebra. Matrices and linear transformations are presented as two sides of the same coin, with their connection motivating inquiry throughout the book. By focusing on this interface, the author offers a conceptual appreciation of the mathematics that is at the heart of further theory and applications. Those continuing to a second course in linear algebra will appreciate the companion volume Advanced Linear and Matrix Algebra. Starting with an introduction to vectors, matrices, and linear transformations, the book focuses on building a geometric intuition of what these tools represent. Linear systems offer a powerful application of the ideas seen so far, and lead onto the introduction of subspaces, linear independence, bases, and rank. Investigation then focuses on the algebraic properties of matrices that illuminate the geometry of the linear transformations that they represent. Determinants, eigenvalues, and eigenvectors all benefit from this geometric viewpoint. Throughout, “Extra Topic” sections augment the core content with a wide range of ideas and applications, from linear programming, to power iteration and linear recurrence relations. Exercises of all levels accompany each section, including many designed to be tackled using computer software. Introduction to Linear and Matrix Algebra is ideal for an introductory proof-based linear algebra course. The engaging color presentation and frequent marginal notes showcase the author’s visual approach. Students are assumed to have completed one or two university-level mathematics courses, though calculus is not an explicit requirement. Instructors will appreciate the ample opportunities to choose topics that align with the needs of each classroom, and the online homework sets that are available through WeBWorK.
Author | : Leonard E. Fuller |
Publisher | : Courier Dover Publications |
Total Pages | : 257 |
Release | : 2017-09-13 |
Genre | : Mathematics |
ISBN | : 0486818462 |
This guide to using matrices as a mathematical tool offers a model for procedure rather than an exposition of theory. Detailed examples illustrate the focus on computational methods. 1962 edition.
Author | : Greg W. Anderson |
Publisher | : Cambridge University Press |
Total Pages | : 507 |
Release | : 2010 |
Genre | : Mathematics |
ISBN | : 0521194520 |
A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.