Introduction to Mathematical Modeling and Chaotic Dynamics

Introduction to Mathematical Modeling and Chaotic Dynamics
Author: Ranjit Kumar Upadhyay
Publisher: CRC Press
Total Pages: 367
Release: 2013-07-23
Genre: Mathematics
ISBN: 1439898863

Introduction to Mathematical Modeling and Chaotic Dynamics focuses on mathematical models in natural systems, particularly ecological systems. Most of the models presented are solved using MATLAB®. The book first covers the necessary mathematical preliminaries, including testing of stability. It then describes the modeling of systems from natural science, focusing on one- and two-dimensional continuous and discrete time models. Moving on to chaotic dynamics, the authors discuss ways to study chaos, types of chaos, and methods for detecting chaos. They also explore chaotic dynamics in single and multiple species systems. The text concludes with a brief discussion on models of mechanical systems and electronic circuits. Suitable for advanced undergraduate and graduate students, this book provides a practical understanding of how the models are used in current natural science and engineering applications. Along with a variety of exercises and solved examples, the text presents all the fundamental concepts and mathematical skills needed to build models and perform analyses.

Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos
Author: Steven H. Strogatz
Publisher: CRC Press
Total Pages: 532
Release: 2018-05-04
Genre: Mathematics
ISBN: 0429961111

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

Chaotic Dynamics

Chaotic Dynamics
Author: Gregory L. Baker
Publisher: Cambridge University Press
Total Pages: 282
Release: 1996
Genre: Science
ISBN: 9780521471060

The previous edition of this text was the first to provide a quantitative introduction to chaos and nonlinear dynamics at the undergraduate level. It was widely praised for the clarity of writing and for the unique and effective way in which the authors presented the basic ideas. These same qualities characterize this revised and expanded second edition. Interest in chaotic dynamics has grown explosively in recent years. Applications to practically every scientific field have had a far-reaching impact. As in the first edition, the authors present all the main features of chaotic dynamics using the damped, driven pendulum as the primary model. This second edition includes additional material on the analysis and characterization of chaotic data, and applications of chaos. This new edition of Chaotic Dynamics can be used as a text for courses on chaos for physics and engineering students at the second- and third-year level.

An Introduction To Chaotic Dynamical Systems

An Introduction To Chaotic Dynamical Systems
Author: Robert Devaney
Publisher: CRC Press
Total Pages: 280
Release: 2018-03-09
Genre: Mathematics
ISBN: 0429981937

The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.

An Introduction to Mathematical Modeling

An Introduction to Mathematical Modeling
Author: Edward A. Bender
Publisher: Courier Corporation
Total Pages: 273
Release: 2012-05-23
Genre: Mathematics
ISBN: 0486137120

Employing a practical, "learn by doing" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields — including science, engineering, and operations research — to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The lively and accessible text requires only minimal scientific background. Designed for senior college or beginning graduate-level students, it assumes only elementary calculus and basic probability theory for the first part, and ordinary differential equations and continuous probability for the second section. All problems require students to study and create models, encouraging their active participation rather than a mechanical approach. Beyond the classroom, this volume will prove interesting and rewarding to anyone concerned with the development of mathematical models or the application of modeling to problem solving in a wide array of applications.

Introduction to Mathematical Modeling Using Discrete Dynamical Systems

Introduction to Mathematical Modeling Using Discrete Dynamical Systems
Author: Frederick R. Marotto
Publisher: Brooks/Cole
Total Pages: 0
Release: 2006
Genre: Differentiable dynamical systems
ISBN: 9780495014171

MATHEMATICAL MODELING USING DISCRETE DYNAMICAL SYSTEMS! This mathematics text introduces powerful mathematical modeling techniques while providing you with the tools you need to succeed. Exercises with answers, suggested computer projects with specific instructions for their completion, and the book-specific website are just a few of the tools that will help you master the material. Coverage of current research, such as dynamical systems, shows you that mathematics is a vibrant and evolving discipline.

Mathematical Models for Society and Biology

Mathematical Models for Society and Biology
Author: Edward Beltrami
Publisher: Academic Press
Total Pages: 281
Release: 2013-06-19
Genre: Social Science
ISBN: 0124046932

Mathematical Models for Society and Biology, 2e, is a useful resource for researchers, graduate students, and post-docs in the applied mathematics and life science fields. Mathematical modeling is one of the major subfields of mathematical biology. A mathematical model may be used to help explain a system, to study the effects of different components, and to make predictions about behavior. Mathematical Models for Society and Biology, 2e, draws on current issues to engagingly relate how to use mathematics to gain insight into problems in biology and contemporary society. For this new edition, author Edward Beltrami uses mathematical models that are simple, transparent, and verifiable. Also new to this edition is an introduction to mathematical notions that every quantitative scientist in the biological and social sciences should know. Additionally, each chapter now includes a detailed discussion on how to formulate a reasonable model to gain insight into the specific question that has been introduced. - Offers 40% more content – 5 new chapters in addition to revisions to existing chapters - Accessible for quick self study as well as a resource for courses in molecular biology, biochemistry, embryology and cell biology, medicine, ecology and evolution, bio-mathematics, and applied math in general - Features expanded appendices with an extensive list of references, solutions to selected exercises in the book, and further discussion of various mathematical methods introduced in the book

Differential Dynamical Systems, Revised Edition

Differential Dynamical Systems, Revised Edition
Author: James D. Meiss
Publisher: SIAM
Total Pages: 410
Release: 2017-01-24
Genre: Mathematics
ISBN: 161197464X

Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.

Introduction to Discrete Dynamical Systems and Chaos

Introduction to Discrete Dynamical Systems and Chaos
Author: Mario Martelli
Publisher: John Wiley & Sons
Total Pages: 347
Release: 2011-11-01
Genre: Mathematics
ISBN: 1118031121

A timely, accessible introduction to the mathematics of chaos. The past three decades have seen dramatic developments in the theory of dynamical systems, particularly regarding the exploration of chaotic behavior. Complex patterns of even simple processes arising in biology, chemistry, physics, engineering, economics, and a host of other disciplines have been investigated, explained, and utilized. Introduction to Discrete Dynamical Systems and Chaos makes these exciting and important ideas accessible to students and scientists by assuming, as a background, only the standard undergraduate training in calculus and linear algebra. Chaos is introduced at the outset and is then incorporated as an integral part of the theory of discrete dynamical systems in one or more dimensions. Both phase space and parameter space analysis are developed with ample exercises, more than 100 figures, and important practical examples such as the dynamics of atmospheric changes and neural networks. An appendix provides readers with clear guidelines on how to use Mathematica to explore discrete dynamical systems numerically. Selected programs can also be downloaded from a Wiley ftp site (address in preface). Another appendix lists possible projects that can be assigned for classroom investigation. Based on the author's 1993 book, but boasting at least 60% new, revised, and updated material, the present Introduction to Discrete Dynamical Systems and Chaos is a unique and extremely useful resource for all scientists interested in this active and intensely studied field.

Topics in Mathematical Modeling

Topics in Mathematical Modeling
Author: Ka-Kit Tung
Publisher: Princeton University Press
Total Pages: 319
Release: 2016-06-14
Genre: Mathematics
ISBN: 1400884055

Topics in Mathematical Modeling is an introductory textbook on mathematical modeling. The book teaches how simple mathematics can help formulate and solve real problems of current research interest in a wide range of fields, including biology, ecology, computer science, geophysics, engineering, and the social sciences. Yet the prerequisites are minimal: calculus and elementary differential equations. Among the many topics addressed are HIV; plant phyllotaxis; global warming; the World Wide Web; plant and animal vascular networks; social networks; chaos and fractals; marriage and divorce; and El Niño. Traditional modeling topics such as predator-prey interaction, harvesting, and wars of attrition are also included. Most chapters begin with the history of a problem, follow with a demonstration of how it can be modeled using various mathematical tools, and close with a discussion of its remaining unsolved aspects. Designed for a one-semester course, the book progresses from problems that can be solved with relatively simple mathematics to ones that require more sophisticated methods. The math techniques are taught as needed to solve the problem being addressed, and each chapter is designed to be largely independent to give teachers flexibility. The book, which can be used as an overview and introduction to applied mathematics, is particularly suitable for sophomore, junior, and senior students in math, science, and engineering.