Introduction To Lattice Theory With Computer Science Applications
Download Introduction To Lattice Theory With Computer Science Applications full books in PDF, epub, and Kindle. Read online free Introduction To Lattice Theory With Computer Science Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Vijay K. Garg |
Publisher | : John Wiley & Sons |
Total Pages | : 272 |
Release | : 2016-03-02 |
Genre | : Computers |
ISBN | : 1119069734 |
A computational perspective on partial order and lattice theory, focusing on algorithms and their applications This book provides a uniform treatment of the theory and applications of lattice theory. The applications covered include tracking dependency in distributed systems, combinatorics, detecting global predicates in distributed systems, set families, and integer partitions. The book presents algorithmic proofs of theorems whenever possible. These proofs are written in the calculational style advocated by Dijkstra, with arguments explicitly spelled out step by step. The author’s intent is for readers to learn not only the proofs, but the heuristics that guide said proofs. Introduction to Lattice Theory with Computer Science Applications: Examines; posets, Dilworth’s theorem, merging algorithms, lattices, lattice completion, morphisms, modular and distributive lattices, slicing, interval orders, tractable posets, lattice enumeration algorithms, and dimension theory Provides end of chapter exercises to help readers retain newfound knowledge on each subject Includes supplementary material at www.ece.utexas.edu/~garg Introduction to Lattice Theory with Computer Science Applications is written for students of computer science, as well as practicing mathematicians.
Author | : Gerhard X. Ritter |
Publisher | : CRC Press |
Total Pages | : 292 |
Release | : 2021-08-23 |
Genre | : Mathematics |
ISBN | : 1000412601 |
Lattice theory extends into virtually every branch of mathematics, ranging from measure theory and convex geometry to probability theory and topology. A more recent development has been the rapid escalation of employing lattice theory for various applications outside the domain of pure mathematics. These applications range from electronic communication theory and gate array devices that implement Boolean logic to artificial intelligence and computer science in general. Introduction to Lattice Algebra: With Applications in AI, Pattern Recognition, Image Analysis, and Biomimetic Neural Networks lays emphasis on two subjects, the first being lattice algebra and the second the practical applications of that algebra. This textbook is intended to be used for a special topics course in artificial intelligence with a focus on pattern recognition, multispectral image analysis, and biomimetic artificial neural networks. The book is self-contained and – depending on the student’s major – can be used for a senior undergraduate level or first-year graduate level course. The book is also an ideal self-study guide for researchers and professionals in the above-mentioned disciplines. Features Filled with instructive examples and exercises to help build understanding Suitable for researchers, professionals and students, both in mathematics and computer science Contains numerous exercises.
Author | : B. A. Davey |
Publisher | : Cambridge University Press |
Total Pages | : 316 |
Release | : 2002-04-18 |
Genre | : Mathematics |
ISBN | : 1107717523 |
This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is of commercial value in social science. Classroom experience has led to numerous pedagogical improvements and many new exercises have been added. As before, exposure to elementary abstract algebra and the notation of set theory are the only prerequisites, making the book suitable for advanced undergraduates and beginning graduate students. It will also be a valuable resource for anyone who meets ordered structures.
Author | : Murray R. Bremner |
Publisher | : CRC Press |
Total Pages | : 330 |
Release | : 2011-08-12 |
Genre | : Computers |
ISBN | : 1439807043 |
First developed in the early 1980s by Lenstra, Lenstra, and Lovasz, the LLL algorithm was originally used to provide a polynomial-time algorithm for factoring polynomials with rational coefficients. It very quickly became an essential tool in integer linear programming problems and was later adapted for use in cryptanalysis. This book provides an i
Author | : Daniele Micciancio |
Publisher | : Springer Science & Business Media |
Total Pages | : 229 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 1461508975 |
Lattices are geometric objects that can be pictorially described as the set of intersection points of an infinite, regular n-dimensional grid. De spite their apparent simplicity, lattices hide a rich combinatorial struc ture, which has attracted the attention of great mathematicians over the last two centuries. Not surprisingly, lattices have found numerous ap plications in mathematics and computer science, ranging from number theory and Diophantine approximation, to combinatorial optimization and cryptography. The study of lattices, specifically from a computational point of view, was marked by two major breakthroughs: the development of the LLL lattice reduction algorithm by Lenstra, Lenstra and Lovasz in the early 80's, and Ajtai's discovery of a connection between the worst-case and average-case hardness of certain lattice problems in the late 90's. The LLL algorithm, despite the relatively poor quality of the solution it gives in the worst case, allowed to devise polynomial time solutions to many classical problems in computer science. These include, solving integer programs in a fixed number of variables, factoring polynomials over the rationals, breaking knapsack based cryptosystems, and finding solutions to many other Diophantine and cryptanalysis problems.
Author | : Steven Roman |
Publisher | : Springer Science & Business Media |
Total Pages | : 307 |
Release | : 2008-12-15 |
Genre | : Mathematics |
ISBN | : 0387789014 |
This book is intended to be a thorough introduction to the subject of order and lattices, with an emphasis on the latter. It can be used for a course at the graduate or advanced undergraduate level or for independent study. Prerequisites are kept to a minimum, but an introductory course in abstract algebra is highly recommended, since many of the examples are drawn from this area. This is a book on pure mathematics: I do not discuss the applications of lattice theory to physics, computer science or other disciplines. Lattice theory began in the early 1890s, when Richard Dedekind wanted to know the answer to the following question: Given three subgroups EF , and G of an abelian group K, what is the largest number of distinct subgroups that can be formed using these subgroups and the operations of intersection and sum (join), as in E?FßÐE?FÑ?GßE?ÐF?GÑ and so on? In lattice-theoretic terms, this is the number of elements in the relatively free modular lattice on three generators. Dedekind [15] answered this question (the answer is #)) and wrote two papers on the subject of lattice theory, but then the subject lay relatively dormant until Garrett Birkhoff, Oystein Ore and others picked it up in the 1930s. Since then, many noted mathematicians have contributed to the subject, including Garrett Birkhoff, Richard Dedekind, Israel Gelfand, George Grätzer, Aleksandr Kurosh, Anatoly Malcev, Oystein Ore, Gian-Carlo Rota, Alfred Tarski and Johnny von Neumann.
Author | : Martin T. Dove |
Publisher | : Cambridge University Press |
Total Pages | : 288 |
Release | : 1993-10-21 |
Genre | : Science |
ISBN | : 0521392934 |
The vibrations of atoms inside crystals - lattice dynamics - is basic to many fields of study in the solid-state and mineral sciences. This book provides a self-contained text that introduces the subject from a basic level and then takes the reader through applications of the theory.
Author | : Hanns Joachim Weinert |
Publisher | : World Scientific |
Total Pages | : 371 |
Release | : 1998-10-30 |
Genre | : Mathematics |
ISBN | : 9814495697 |
This book provides an introduction to the algebraic theory of semirings and, in this context, to basic algebraic concepts as e.g. semigroups, lattices and rings. It includes an algebraic theory of infinite sums as well as a detailed treatment of several applications in theoretical computer science. Complete proofs, various examples and exercises (some of them with solutions) make the book suitable for self-study. On the other hand, a more experienced reader who looks for information about the most common concepts and results on semirings will find cross-references throughout the book, a comprehensive bibliography and various hints to it.
Author | : Martin Grötschel |
Publisher | : Springer Science & Business Media |
Total Pages | : 536 |
Release | : 2010-05-28 |
Genre | : Mathematics |
ISBN | : 3540852212 |
Discrete mathematics and theoretical computer science are closely linked research areas with strong impacts on applications and various other scientific disciplines. Both fields deeply cross fertilize each other. One of the persons who particularly contributed to building bridges between these and many other areas is László Lovász, a scholar whose outstanding scientific work has defined and shaped many research directions in the last 40 years. A number of friends and colleagues, all top authorities in their fields of expertise and all invited plenary speakers at one of two conferences in August 2008 in Hungary, both celebrating Lovász’s 60th birthday, have contributed their latest research papers to this volume. This collection of articles offers an excellent view on the state of combinatorics and related topics and will be of interest for experienced specialists as well as young researchers.
Author | : Y. N. Singh |
Publisher | : New Age International |
Total Pages | : 24 |
Release | : 2005 |
Genre | : Mathematics |
ISBN | : 8122416675 |
The Interesting Feature Of This Book Is Its Organization And Structure. That Consists Of Systematizing Of The Definitions, Methods, And Results That Something Resembling A Theory. Simplicity, Clarity, And Precision Of Mathematical Language Makes Theoretical Topics More Appealing To The Readers Who Are Of Mathematical Or Non-Mathematical Background. For Quick References And Immediate Attentions3⁄4Concepts And Definitions, Methods And Theorems, And Key Notes Are Presented Through Highlighted Points From Beginning To End. Whenever, Necessary And Probable A Visual Approach Of Presentation Is Used. The Amalgamation Of Text And Figures Make Mathematical Rigors Easier To Understand. Each Chapter Begins With The Detailed Contents, Which Are Discussed Inside The Chapter And Conclude With A Summary Of The Material Covered In The Chapter. Summary Provides A Brief Overview Of All The Topics Covered In The Chapter. To Demonstrate The Principles Better, The Applicability Of The Concepts Discussed In Each Topic Are Illustrated By Several Examples Followed By The Practice Sets Or Exercises.