Introduction to Higher-Order Categorical Logic

Introduction to Higher-Order Categorical Logic
Author: J. Lambek
Publisher: Cambridge University Press
Total Pages: 308
Release: 1988-03-25
Genre: Mathematics
ISBN: 9780521356534

Part I indicates that typed-calculi are a formulation of higher-order logic, and cartesian closed categories are essentially the same. Part II demonstrates that another formulation of higher-order logic is closely related to topos theory.

Categorical Logic and Type Theory

Categorical Logic and Type Theory
Author: B. Jacobs
Publisher: Gulf Professional Publishing
Total Pages: 784
Release: 2001-05-10
Genre: Computers
ISBN: 9780444508539

This book is an attempt to give a systematic presentation of both logic and type theory from a categorical perspective, using the unifying concept of fibred category. Its intended audience consists of logicians, type theorists, category theorists and (theoretical) computer scientists.

Basic Category Theory

Basic Category Theory
Author: Tom Leinster
Publisher: Cambridge University Press
Total Pages: 193
Release: 2014-07-24
Genre: Mathematics
ISBN: 1107044243

A short introduction ideal for students learning category theory for the first time.

Basic Category Theory for Computer Scientists

Basic Category Theory for Computer Scientists
Author: Benjamin C. Pierce
Publisher: MIT Press
Total Pages: 117
Release: 1991-08-07
Genre: Computers
ISBN: 0262326450

Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Category theory is a branch of pure mathematics that is becoming an increasingly important tool in theoretical computer science, especially in programming language semantics, domain theory, and concurrency, where it is already a standard language of discourse. Assuming a minimum of mathematical preparation, Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Four case studies illustrate applications of category theory to programming language design, semantics, and the solution of recursive domain equations. A brief literature survey offers suggestions for further study in more advanced texts. Contents Tutorial • Applications • Further Reading

Categories for Types

Categories for Types
Author: Roy L. Crole
Publisher: Cambridge University Press
Total Pages: 362
Release: 1993
Genre: Computers
ISBN: 9780521457019

This textbook explains the basic principles of categorical type theory and the techniques used to derive categorical semantics for specific type theories. It introduces the reader to ordered set theory, lattices and domains, and this material provides plenty of examples for an introduction to category theory, which covers categories, functors, natural transformations, the Yoneda lemma, cartesian closed categories, limits, adjunctions and indexed categories. Four kinds of formal system are considered in detail, namely algebraic, functional, polymorphic functional, and higher order polymorphic functional type theory. For each of these the categorical semantics are derived and results about the type systems are proved categorically. Issues of soundness and completeness are also considered. Aimed at advanced undergraduates and beginning graduates, this book will be of interest to theoretical computer scientists, logicians and mathematicians specializing in category theory.

Categorical Foundations

Categorical Foundations
Author: Maria Cristina Pedicchio
Publisher: Cambridge University Press
Total Pages: 452
Release: 2004
Genre: Mathematics
ISBN: 9780521834148

Publisher Description

Uniform Central Limit Theorems

Uniform Central Limit Theorems
Author: R. M. Dudley
Publisher: Cambridge University Press
Total Pages: 452
Release: 1999-07-28
Genre: Mathematics
ISBN: 0521461022

This treatise by an acknowledged expert includes several topics not found in any previous book.

Category Theory in Context

Category Theory in Context
Author: Emily Riehl
Publisher: Courier Dover Publications
Total Pages: 273
Release: 2017-03-09
Genre: Mathematics
ISBN: 0486820807

Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.