Introduction To Geometry And Relativity
Download Introduction To Geometry And Relativity full books in PDF, epub, and Kindle. Read online free Introduction To Geometry And Relativity ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : David C. Mello |
Publisher | : Nova Science Publishers |
Total Pages | : 0 |
Release | : 2013 |
Genre | : Geometry, Differential |
ISBN | : 9781626185425 |
This book provides a lucid introduction to both modern differential geometry and relativity for advanced undergraduates and first-year graduate students of applied mathematics and physical sciences. This book meets an overwhelming need for a book on modern differential geometry and relativity that is student-friendly, and which is also suitable for self-study. The book presumes a minimal level of mathematical maturity so that any student who has completed the standard Calculus sequence should be able to read and understand the book. The key features of the book are: Detailed solutions are provided to the Exercises in each chapter; Many of the missing steps that are often omitted from standard mathematical derivations have been provided to make the book easier to read and understand; A detailed introduction to Electrodynamics is provided so that the book is accessible to students who have not had a formal course in this area; In its treatment of modern differential geometry, the book employs both a modern, co-ordinate-free approach, and the standard co-ordinate-based approach. This makes the book attractive to a large audience of readers.Also, the book is particularly attractive to professional non-specialists who would like an easy to read introduction to the subject.
Author | : Roberto Torretti |
Publisher | : Courier Corporation |
Total Pages | : 417 |
Release | : 1996-01-01 |
Genre | : Science |
ISBN | : 0486690466 |
Early in this century, it was shown that the new non-Newtonian physics -- known as Einstein's Special Theory of Relativity -- rested on a new, non-Euclidean geometry, which incorporated time and space into a unified "chronogeometric" structure. This high-level study elucidates the motivation and significance of the changes in physical geometry brought about by Einstein, in both the first and the second phase of Relativity. After a discussion of Newtonian principles and 19th-century views on electrodynamics and the aether, the author offers illuminating expositions of Einstein's electrodynamics of moving bodies, Minkowski spacetime, Einstein's quest for a theory of gravity, gravitational geometry, the concept of simultaneity, time and causality and other topics. An important Appendix -- designed to define spacetime curvature -- considers differentiable manifolds, fiber bundles, linear connections and useful formulae. Relativity continues to be a major focus of interest for physicists, mathematicians and philosophers of science. This highly regarded work offers them a rich, "historico-critical" exposition -- emphasizing geometrical ideas -- of the elements of the Special and General Theory of Relativity.
Author | : James J. Callahan |
Publisher | : Springer Science & Business Media |
Total Pages | : 474 |
Release | : 2013-03-09 |
Genre | : Science |
ISBN | : 1475767366 |
Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.
Author | : Sean M. Carroll |
Publisher | : Cambridge University Press |
Total Pages | : 529 |
Release | : 2019-08-08 |
Genre | : Science |
ISBN | : 1108488390 |
An accessible introductory textbook on general relativity, covering the theory's foundations, mathematical formalism and major applications.
Author | : Jose Natario |
Publisher | : Springer Science & Business Media |
Total Pages | : 133 |
Release | : 2011-07-30 |
Genre | : Science |
ISBN | : 3642214525 |
“General Relativity Without Calculus” offers a compact but mathematically correct introduction to the general theory of relativity, assuming only a basic knowledge of high school mathematics and physics. Targeted at first year undergraduates (and advanced high school students) who wish to learn Einstein’s theory beyond popular science accounts, it covers the basics of special relativity, Minkowski space-time, non-Euclidean geometry, Newtonian gravity, the Schwarzschild solution, black holes and cosmology. The quick-paced style is balanced by over 75 exercises (including full solutions), allowing readers to test and consolidate their understanding.
Author | : Tevian Dray |
Publisher | : CRC Press |
Total Pages | : 324 |
Release | : 2014-10-20 |
Genre | : Mathematics |
ISBN | : 1466510005 |
Differential Forms and the Geometry of General Relativity provides readers with a coherent path to understanding relativity. Requiring little more than calculus and some linear algebra, it helps readers learn just enough differential geometry to grasp the basics of general relativity. The book contains two intertwined but distinct halves. Designed for advanced undergraduate or beginning graduate students in mathematics or physics, most of the text requires little more than familiarity with calculus and linear algebra. The first half presents an introduction to general relativity that describes some of the surprising implications of relativity without introducing more formalism than necessary. This nonstandard approach uses differential forms rather than tensor calculus and minimizes the use of "index gymnastics" as much as possible. The second half of the book takes a more detailed look at the mathematics of differential forms. It covers the theory behind the mathematics used in the first half by emphasizing a conceptual understanding instead of formal proofs. The book provides a language to describe curvature, the key geometric idea in general relativity.
Author | : RichardL. Faber |
Publisher | : Routledge |
Total Pages | : 280 |
Release | : 2017-10-19 |
Genre | : Mathematics |
ISBN | : 1351455141 |
Differentilil Geometry and Relativity Theory: An Introduction approaches relativity asa geometric theory of space and time in which gravity is a manifestation of space-timecurvature, rathe1 than a force. Uniting differential geometry and both special and generalrelativity in a single source, this easy-to-understand text opens the general theory of relativityto mathematics majors having a backgr.ound only in multivariable calculus and linearalgebra.The book offers a broad overview of the physical foundations and mathematical details ofrelativity, and presents concrete physical interpretations of numerous abstract concepts inRiemannian geometry. The work is profusely illustrated with diagrams aiding in the understandingof proofs and explanations. Appendices feature important material on vectoranalysis and hyperbolic functions.Differential Geometry and Relativity Theory: An Introduction serves as the ideal textfor high-level undergraduate couues in mathematics and physics, and includes a solutionsmanual augmenting classroom study. It is an invaluable reference for mathematicians interestedin differential and IUemannian geometry, or the special and general theories ofrelativity
Author | : Tevian Dray |
Publisher | : CRC Press |
Total Pages | : 151 |
Release | : 2012-07-02 |
Genre | : Mathematics |
ISBN | : 1466510471 |
The Geometry of Special Relativity provides an introduction to special relativity that encourages readers to see beyond the formulas to the deeper geometric structure. The text treats the geometry of hyperbolas as the key to understanding special relativity. This approach replaces the ubiquitous γ symbol of most standard treatments with the appropriate hyperbolic trigonometric functions. In most cases, this not only simplifies the appearance of the formulas, but also emphasizes their geometric content in such a way as to make them almost obvious. Furthermore, many important relations, including the famous relativistic addition formula for velocities, follow directly from the appropriate trigonometric addition formulas. The book first describes the basic physics of special relativity to set the stage for the geometric treatment that follows. It then reviews properties of ordinary two-dimensional Euclidean space, expressed in terms of the usual circular trigonometric functions, before presenting a similar treatment of two-dimensional Minkowski space, expressed in terms of hyperbolic trigonometric functions. After covering special relativity again from the geometric point of view, the text discusses standard paradoxes, applications to relativistic mechanics, the relativistic unification of electricity and magnetism, and further steps leading to Einstein’s general theory of relativity. The book also briefly describes the further steps leading to Einstein’s general theory of relativity and then explores applications of hyperbola geometry to non-Euclidean geometry and calculus, including a geometric construction of the derivatives of trigonometric functions and the exponential function.
Author | : Dan A. Lee |
Publisher | : American Mathematical Soc. |
Total Pages | : 377 |
Release | : 2019-09-25 |
Genre | : Mathematics |
ISBN | : 147045081X |
Many problems in general relativity are essentially geometric in nature, in the sense that they can be understood in terms of Riemannian geometry and partial differential equations. This book is centered around the study of mass in general relativity using the techniques of geometric analysis. Specifically, it provides a comprehensive treatment of the positive mass theorem and closely related results, such as the Penrose inequality, drawing on a variety of tools used in this area of research, including minimal hypersurfaces, conformal geometry, inverse mean curvature flow, conformal flow, spinors and the Dirac operator, marginally outer trapped surfaces, and density theorems. This is the first time these topics have been gathered into a single place and presented with an advanced graduate student audience in mind; several dozen exercises are also included. The main prerequisite for this book is a working understanding of Riemannian geometry and basic knowledge of elliptic linear partial differential equations, with only minimal prior knowledge of physics required. The second part of the book includes a short crash course on general relativity, which provides background for the study of asymptotically flat initial data sets satisfying the dominant energy condition.
Author | : Iva Stavrov |
Publisher | : American Mathematical Soc. |
Total Pages | : 243 |
Release | : 2020-11-12 |
Genre | : Education |
ISBN | : 1470456281 |
This book introduces advanced undergraduates to Riemannian geometry and mathematical general relativity. The overall strategy of the book is to explain the concept of curvature via the Jacobi equation which, through discussion of tidal forces, further helps motivate the Einstein field equations. After addressing concepts in geometry such as metrics, covariant differentiation, tensor calculus and curvature, the book explains the mathematical framework for both special and general relativity. Relativistic concepts discussed include (initial value formulation of) the Einstein equations, stress-energy tensor, Schwarzschild space-time, ADM mass and geodesic incompleteness. The concluding chapters of the book introduce the reader to geometric analysis: original results of the author and her undergraduate student collaborators illustrate how methods of analysis and differential equations are used in addressing questions from geometry and relativity. The book is mostly self-contained and the reader is only expected to have a solid foundation in multivariable and vector calculus and linear algebra. The material in this book was first developed for the 2013 summer program in geometric analysis at the Park City Math Institute, and was recently modified and expanded to reflect the author's experience of teaching mathematical general relativity to advanced undergraduates at Lewis & Clark College.