Introduction to Elementary Mathematical Logic

Introduction to Elementary Mathematical Logic
Author: Abram Aronovich Stolyar
Publisher: Courier Corporation
Total Pages: 229
Release: 1984-01-01
Genre: Mathematics
ISBN: 0486645614

This lucid, non-intimidating presentation by a Russian scholar explores propositional logic, propositional calculus, and predicate logic. Topics include computer science and systems analysis, linguistics, and problems in the foundations of mathematics. Accessible to high school students, it also constitutes a valuable review of fundamentals for professionals. 1970 edition.

Introduction to Mathematical Logic

Introduction to Mathematical Logic
Author: Elliot Mendelsohn
Publisher: Springer Science & Business Media
Total Pages: 351
Release: 2012-12-06
Genre: Science
ISBN: 1461572886

This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.

Introduction To Mathematical Logic (Extended Edition)

Introduction To Mathematical Logic (Extended Edition)
Author: Michal Walicki
Publisher: World Scientific Publishing Company
Total Pages: 302
Release: 2016-08-12
Genre: Mathematics
ISBN: 9814719986

This is a systematic and well-paced introduction to mathematical logic. Excellent as a course text, the book presupposes only elementary background and can be used also for self-study by more ambitious students.Starting with the basics of set theory, induction and computability, it covers propositional and first order logic — their syntax, reasoning systems and semantics. Soundness and completeness results for Hilbert's and Gentzen's systems are presented, along with simple decidability arguments. The general applicability of various concepts and techniques is demonstrated by highlighting their consistent reuse in different contexts.Unlike in most comparable texts, presentation of syntactic reasoning systems precedes the semantic explanations. The simplicity of syntactic constructions and rules — of a high, though often neglected, pedagogical value — aids students in approaching more complex semantic issues. This order of presentation also brings forth the relative independence of syntax from the semantics, helping to appreciate the importance of the purely symbolic systems, like those underlying computers.An overview of the history of logic precedes the main text, while informal analogies precede introduction of most central concepts. These informal aspects are kept clearly apart from the technical ones. Together, they form a unique text which may be appreciated equally by lecturers and students occupied with mathematical precision, as well as those interested in the relations of logical formalisms to the problems of computability and the philosophy of logic.This revised edition contains also, besides many new exercises, a new chapter on semantic paradoxes. An equivalence of logical and graphical representations allows us to see vicious circularity as the odd cycles in the graphical representation and can be used as a simple tool for diagnosing paradoxes in natural discourse.

Mathematical Logic

Mathematical Logic
Author: Stephen Cole Kleene
Publisher: Courier Corporation
Total Pages: 436
Release: 2013-04-22
Genre: Mathematics
ISBN: 0486317072

Contents include an elementary but thorough overview of mathematical logic of 1st order; formal number theory; surveys of the work by Church, Turing, and others, including Gödel's completeness theorem, Gentzen's theorem, more.

A Friendly Introduction to Mathematical Logic

A Friendly Introduction to Mathematical Logic
Author: Christopher C. Leary
Publisher: Lulu.com
Total Pages: 382
Release: 2015
Genre: Computers
ISBN: 1942341075

At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.

Introduction to Logic

Introduction to Logic
Author: Patrick Suppes
Publisher: Courier Corporation
Total Pages: 340
Release: 2012-07-12
Genre: Mathematics
ISBN: 0486138054

Part I of this coherent, well-organized text deals with formal principles of inference and definition. Part II explores elementary intuitive set theory, with separate chapters on sets, relations, and functions. Ideal for undergraduates.

Mathematical Logic

Mathematical Logic
Author: H.-D. Ebbinghaus
Publisher: Springer Science & Business Media
Total Pages: 290
Release: 2013-03-14
Genre: Mathematics
ISBN: 1475723555

This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé's characterization of elementary equivalence, Lindström's theorem on the maximality of first-order logic, and the fundamentals of logic programming.

Logic in Elementary Mathematics

Logic in Elementary Mathematics
Author: Robert M. Exner
Publisher: Courier Corporation
Total Pages: 290
Release: 2011-01-01
Genre: Mathematics
ISBN: 0486482219

"This accessible, applications-related introductory treatment explores some of the structure of modern symbolic logic useful in the exposition of elementary mathematics. Topics include axiomatic structure and the relation of theory to interpretation. No prior training in logic is necessary, and numerous examples and exercises aid in the mastery of the language of logic. 1959 edition"--