Elementary Functions

Elementary Functions
Author: Jean-Michel Muller
Publisher: Birkhäuser
Total Pages: 297
Release: 2016-11-16
Genre: Computers
ISBN: 1489979832

This textbook presents the concepts and tools necessary to understand, build, and implement algorithms for computing elementary functions (e.g., logarithms, exponentials, and the trigonometric functions). Both hardware- and software-oriented algorithms are included, along with issues related to accurate floating-point implementation. This third edition has been updated and expanded to incorporate the most recent advances in the field, new elementary function algorithms, and function software. After a preliminary chapter that briefly introduces some fundamental concepts of computer arithmetic, such as floating-point arithmetic and redundant number systems, the text is divided into three main parts. Part I considers the computation of elementary functions using algorithms based on polynomial or rational approximations and using table-based methods; the final chapter in this section deals with basic principles of multiple-precision arithmetic. Part II is devoted to a presentation of “shift-and-add” algorithms (hardware-oriented algorithms that use additions and shifts only). Issues related to accuracy, including range reduction, preservation of monotonicity, and correct rounding, as well as some examples of implementation are explored in Part III. Numerous examples of command lines and full programs are provided throughout for various software packages, including Maple, Sollya, and Gappa. New to this edition are an in-depth overview of the IEEE-754-2008 standard for floating-point arithmetic; a section on using double- and triple-word numbers; a presentation of new tools for designing accurate function software; and a section on the Toom-Cook family of multiplication algorithms. The techniques presented in this book will be of interest to implementers of elementary function libraries or circuits and programmers of numerical applications. Additionally, graduate and advanced undergraduate students, professionals, and researchers in scientific computing, numerical analysis, software engineering, and computer engineering will find this a useful reference and resource. PRAISE FOR PREVIOUS EDITIONS “[T]his book seems like an essential reference for the experts (which I'm not). More importantly, this is an interesting book for the curious (which I am). In this case, you'll probably learn many interesting things from this book. If you teach numerical analysis or approximation theory, then this book will give you some good examples to discuss in class." — MAA Reviews (Review of Second Edition) "The rich content of ideas sketched or presented in some detail in this book is supplemented by a list of over three hundred references, most of them of 1980 or more recent. The book also contains some relevant typical programs." — Zentralblatt MATH (Review of Second Edition) “I think that the book will be very valuable to students both in numerical analysis and in computer science. I found [it to be] well written and containing much interesting material, most of the time disseminated in specialized papers published in specialized journals difficult to find." — Numerical Algorithms (Review of First Edition)

Functions of a Real Variable

Functions of a Real Variable
Author: N. Bourbaki
Publisher: Springer Science & Business Media
Total Pages: 343
Release: 2013-12-01
Genre: Mathematics
ISBN: 3642593151

This is an English translation of Bourbaki’s Fonctions d'une Variable Réelle. Coverage includes: functions allowed to take values in topological vector spaces, asymptotic expansions are treated on a filtered set equipped with a comparison scale, theorems on the dependence on parameters of differential equations are directly applicable to the study of flows of vector fields on differential manifolds, etc.

Elementary Theory of Analytic Functions of One or Several Complex Variables

Elementary Theory of Analytic Functions of One or Several Complex Variables
Author: Henri Cartan
Publisher: Courier Corporation
Total Pages: 242
Release: 2013-04-22
Genre: Mathematics
ISBN: 0486318672

Basic treatment includes existence theorem for solutions of differential systems where data is analytic, holomorphic functions, Cauchy's integral, Taylor and Laurent expansions, more. Exercises. 1973 edition.

An Introduction to Symmetric Functions and Their Combinatorics

An Introduction to Symmetric Functions and Their Combinatorics
Author: Eric S. Egge
Publisher: American Mathematical Soc.
Total Pages: 359
Release: 2019-11-18
Genre: Education
ISBN: 1470448998

This book is a reader-friendly introduction to the theory of symmetric functions, and it includes fundamental topics such as the monomial, elementary, homogeneous, and Schur function bases; the skew Schur functions; the Jacobi–Trudi identities; the involution ω ω; the Hall inner product; Cauchy's formula; the RSK correspondence and how to implement it with both insertion and growth diagrams; the Pieri rules; the Murnaghan–Nakayama rule; Knuth equivalence; jeu de taquin; and the Littlewood–Richardson rule. The book also includes glimpses of recent developments and active areas of research, including Grothendieck polynomials, dual stable Grothendieck polynomials, Stanley's chromatic symmetric function, and Stanley's chromatic tree conjecture. Written in a conversational style, the book contains many motivating and illustrative examples. Whenever possible it takes a combinatorial approach, using bijections, involutions, and combinatorial ideas to prove algebraic results. The prerequisites for this book are minimal—familiarity with linear algebra, partitions, and generating functions is all one needs to get started. This makes the book accessible to a wide array of undergraduates interested in combinatorics.

Analysis I

Analysis I
Author: Roger Godement
Publisher: Springer Science & Business Media
Total Pages: 453
Release: 2012-12-06
Genre: Mathematics
ISBN: 364218491X

Functions in R and C, including the theory of Fourier series, Fourier integrals and part of that of holomorphic functions, form the focal topic of these two volumes. Based on a course given by the author to large audiences at Paris VII University for many years, the exposition proceeds somewhat nonlinearly, blending rigorous mathematics skilfully with didactical and historical considerations. It sets out to illustrate the variety of possible approaches to the main results, in order to initiate the reader to methods, the underlying reasoning, and fundamental ideas. It is suitable for both teaching and self-study. In his familiar, personal style, the author emphasizes ideas over calculations and, avoiding the condensed style frequently found in textbooks, explains these ideas without parsimony of words. The French edition in four volumes, published from 1998, has met with resounding success: the first two volumes are now available in English.

Elementary Functions:

Elementary Functions:
Author: Jean-Michel Muller
Publisher: Springer Science & Business Media
Total Pages: 211
Release: 2013-03-14
Genre: Computers
ISBN: 1475726465

Second Edition of successful, well-reviewed Birkhauser book, which sold 866 copies in North America Provides an up-to-date presentation by including new results, examples, and problems throughout the text The second edition adds a chapter on multiple-precision arithmetic, and new algorithms invented since 1997

An Elementary Introduction to the Wolfram Language

An Elementary Introduction to the Wolfram Language
Author: Stephen Wolfram
Publisher: Wolfram Research, Incorporated
Total Pages: 0
Release: 2017
Genre: Mathematica (Computer file).
ISBN: 9781944183059

The Wolfram Language represents a major advance in programming languages that makes leading-edge computation accessible to everyone. Unique in its approach of building in vast knowledge and automation, the Wolfram Language scales from a single line of easy-to-understand interactive code to million-line production systems. This book provides an elementary introduction to the Wolfram Language and modern computational thinking. It assumes no prior knowledge of programming, and is suitable for both technical and non-technical college and high-school students, as well as anyone with an interest in the latest technology and its practical application.

An Introduction to Analytic Functions

An Introduction to Analytic Functions
Author: John Sheridan Mac Nerney
Publisher: Springer Nature
Total Pages: 96
Release: 2020-05-30
Genre: Mathematics
ISBN: 303042085X

When first published in 1959, this book was the basis of a two-semester course in complex analysis for upper undergraduate and graduate students. J. S. Mac Nerney was a proponent of the Socratic, or “do-it-yourself” method of learning mathematics, in which students are encouraged to engage in mathematical problem solving, including theorems at every level which are often regarded as “too difficult” for students to prove for themselves. Accordingly, Mac Nerney provides no proofs. What he does instead is to compose and arrange the investigation in his own unique style, so that a contextual proof is always available to the persistent student who enjoys a challenge. The central idea is to empower students by allowing them to discover and rely on their own mathematical abilities. This text may be used in a variety of settings, including: the usual classroom or seminar, but with the teacher acting mainly as a moderator while the students present their discoveries, a small-group setting in which the students present their discoveries to each other, and independent study. The Editors, William E. Kaufman (who was Mac Nerney’s last PhD student) and Ryan C. Schwiebert, have composed the original typed Work into LaTeX ; they have updated the notation, terminology, and some of the prose for modern usage, but the organization of content has been strictly preserved. About this Book, some new exercises, and an index have also been added.