Introduction to Algebraic and Abelian Functions

Introduction to Algebraic and Abelian Functions
Author: Serge Lang
Publisher: Springer Science & Business Media
Total Pages: 178
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461257409

Introduction to Algebraic and Abelian Functions is a self-contained presentation of a fundamental subject in algebraic geometry and number theory. For this revised edition, the material on theta functions has been expanded, and the example of the Fermat curves is carried throughout the text. This volume is geared toward a second-year graduate course, but it leads naturally to the study of more advanced books listed in the bibliography.

Introduction to Algebraic and Abelian Functions

Introduction to Algebraic and Abelian Functions
Author: Serge Lang
Publisher: Springer Science & Business Media
Total Pages: 186
Release: 1982-12
Genre: Mathematics
ISBN: 9780387907109

Introduction to Algebraic and Abelian Functions is a self-contained presentation of a fundamental subject in algebraic geometry and number theory. For this revised edition, the material on theta functions has been expanded, and the example of the Fermat curves is carried throughout the text. This volume is geared toward a second-year graduate course, but it leads naturally to the study of more advanced books listed in the bibliography.

Abelian Varieties with Complex Multiplication and Modular Functions

Abelian Varieties with Complex Multiplication and Modular Functions
Author: Goro Shimura
Publisher: Princeton University Press
Total Pages: 232
Release: 2016-06-02
Genre: Mathematics
ISBN: 1400883946

Reciprocity laws of various kinds play a central role in number theory. In the easiest case, one obtains a transparent formulation by means of roots of unity, which are special values of exponential functions. A similar theory can be developed for special values of elliptic or elliptic modular functions, and is called complex multiplication of such functions. In 1900 Hilbert proposed the generalization of these as the twelfth of his famous problems. In this book, Goro Shimura provides the most comprehensive generalizations of this type by stating several reciprocity laws in terms of abelian varieties, theta functions, and modular functions of several variables, including Siegel modular functions. This subject is closely connected with the zeta function of an abelian variety, which is also covered as a main theme in the book. The third topic explored by Shimura is the various algebraic relations among the periods of abelian integrals. The investigation of such algebraicity is relatively new, but has attracted the interest of increasingly many researchers. Many of the topics discussed in this book have not been covered before. In particular, this is the first book in which the topics of various algebraic relations among the periods of abelian integrals, as well as the special values of theta and Siegel modular functions, are treated extensively.

Introduction to the Classical Theory of Abelian Functions

Introduction to the Classical Theory of Abelian Functions
Author: Alekse_ Ivanovich Markushevich
Publisher: American Mathematical Soc.
Total Pages: 188
Release: 2006-07-26
Genre: Mathematics
ISBN: 9780821898369

Historical introduction. The Jacobian inversion problem Periodic functions of several complex variables Riemann matrices. Jacobian (intermediate) functions Construction of Jacobian functions of a given type. Theta functions and Abelian functions. Abelian and Picard manifolds Appendix A. Skew-symmetric determinants Appendix B. Divisors of analytic functions Appendix C. A summary of the most important formulas

Algebraic Equations

Algebraic Equations
Author: Edgar Dehn
Publisher: Courier Corporation
Total Pages: 225
Release: 2012-09-05
Genre: Mathematics
ISBN: 0486155102

Focusing on basics of algebraic theory, this text presents detailed explanations of integral functions, permutations, and groups as well as Lagrange and Galois theory. Many numerical examples with complete solutions. 1930 edition.

Introduction to the Arithmetic Theory of Automorphic Functions

Introduction to the Arithmetic Theory of Automorphic Functions
Author: Gorō Shimura
Publisher: Princeton University Press
Total Pages: 292
Release: 1971-08-21
Genre: Mathematics
ISBN: 9780691080925

The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.

Complex Abelian Varieties

Complex Abelian Varieties
Author: Herbert Lange
Publisher: Springer Science & Business Media
Total Pages: 443
Release: 2013-03-09
Genre: Mathematics
ISBN: 3662027887

Abelian varieties are special examples of projective varieties. As such theycan be described by a set of homogeneous polynomial equations. The theory ofabelian varieties originated in the beginning of the ninetheenth centrury with the work of Abel and Jacobi. The subject of this book is the theory of abelian varieties over the field of complex numbers, and it covers the main results of the theory, both classic and recent, in modern language. It is intended to give a comprehensive introduction to the field, but also to serve as a reference. The focal topics are the projective embeddings of an abelian variety, their equations and geometric properties. Moreover several moduli spaces of abelian varieties with additional structure are constructed. Some special results onJacobians and Prym varieties allow applications to the theory of algebraic curves. The main tools for the proofs are the theta group of a line bundle, introduced by Mumford, and the characteristics, to be associated to any nondegenerate line bundle. They are a direct generalization of the classical notion of characteristics of theta functions.

A Book of Abstract Algebra

A Book of Abstract Algebra
Author: Charles C Pinter
Publisher: Courier Corporation
Total Pages: 402
Release: 2010-01-14
Genre: Mathematics
ISBN: 0486474178

Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.

Topics in Complex Function Theory, Volume 3

Topics in Complex Function Theory, Volume 3
Author: Carl Ludwig Siegel
Publisher: John Wiley & Sons
Total Pages: 260
Release: 1989-01-18
Genre: Mathematics
ISBN: 9780471504016

Develops the higher parts of function theory in a unified presentation. Starts with elliptic integrals and functions and uniformization theory, continues with automorphic functions and the theory of abelian integrals and ends with the theory of abelian functions and modular functions in several variables. The last topic originates with the author and appears here for the first time in book form.