Introduction To Abstract Algebra An Sets Groups Rings And Fields
Download Introduction To Abstract Algebra An Sets Groups Rings And Fields full books in PDF, epub, and Kindle. Read online free Introduction To Abstract Algebra An Sets Groups Rings And Fields ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : R. B. J. T. Allenby |
Publisher | : Butterworth-Heinemann |
Total Pages | : 383 |
Release | : 1991 |
Genre | : Mathematics |
ISBN | : 9780340544402 |
Provides an introduction to the results, methods and ideas which are now commonly studied in abstract algebra courses
Author | : R. B. J. T. Allenby |
Publisher | : Hodder Education |
Total Pages | : 422 |
Release | : 1983 |
Genre | : Mathematics |
ISBN | : |
This book provides a stimulating and unusiual introduction to the results, methods and ideas which are now commonly studied in abstract algebra courses in universities and polytechnics. The mixture of informal and formal presentation generates the enthusiasm of the reader without neglecting the axiomatic approach necessary for the serious study.
Author | : R. B. J. T. Allenby |
Publisher | : |
Total Pages | : 294 |
Release | : 1983 |
Genre | : Algebra, Abstract |
ISBN | : 9780340544402 |
Author | : Benjamin Fine |
Publisher | : JHU Press |
Total Pages | : 583 |
Release | : 2014-07-01 |
Genre | : Mathematics |
ISBN | : 1421411776 |
A new approach to abstract algebra that eases student anxieties by building on fundamentals. Introduction to Abstract Algebra presents a breakthrough approach to teaching one of math's most intimidating concepts. Avoiding the pitfalls common in the standard textbooks, Benjamin Fine, Anthony M. Gaglione, and Gerhard Rosenberger set a pace that allows beginner-level students to follow the progression from familiar topics such as rings, numbers, and groups to more difficult concepts. Classroom tested and revised until students achieved consistent, positive results, this textbook is designed to keep students focused as they learn complex topics. Fine, Gaglione, and Rosenberger's clear explanations prevent students from getting lost as they move deeper and deeper into areas such as abelian groups, fields, and Galois theory. This textbook will help bring about the day when abstract algebra no longer creates intense anxiety but instead challenges students to fully grasp the meaning and power of the approach. Topics covered include: • Rings • Integral domains • The fundamental theorem of arithmetic • Fields • Groups • Lagrange's theorem • Isomorphism theorems for groups • Fundamental theorem of finite abelian groups • The simplicity of An for n5 • Sylow theorems • The Jordan-Hölder theorem • Ring isomorphism theorems • Euclidean domains • Principal ideal domains • The fundamental theorem of algebra • Vector spaces • Algebras • Field extensions: algebraic and transcendental • The fundamental theorem of Galois theory • The insolvability of the quintic
Author | : Bharath Sethuraman |
Publisher | : Springer Science & Business Media |
Total Pages | : 210 |
Release | : 1996-11-26 |
Genre | : Mathematics |
ISBN | : 0387948481 |
Using the proof of the non-trisectability of an arbitrary angle as a final goal, the author develops in an easy conversational style the basics of rings, fields, and vector spaces. Originally developed as a text for an introduction to algebra course for future high-school teachers at California State University, Northridge, the focus of this book is on exposition. It would serve extremely well as a focused, one-semester introduction to abstract algebra.
Author | : Steven Howard Weintraub |
Publisher | : World Scientific |
Total Pages | : 438 |
Release | : 2022-05-25 |
Genre | : Mathematics |
ISBN | : 9811246688 |
This book is a textbook for a semester-long or year-long introductory course in abstract algebra at the upper undergraduate or beginning graduate level.It treats set theory, group theory, ring and ideal theory, and field theory (including Galois theory), and culminates with a treatment of Dedekind rings, including rings of algebraic integers.In addition to treating standard topics, it contains material not often dealt with in books at this level. It provides a fresh perspective on the subjects it covers, with, in particular, distinctive treatments of factorization theory in integral domains and of Galois theory.As an introduction, it presupposes no prior knowledge of abstract algebra, but provides a well-motivated, clear, and rigorous treatment of the subject, illustrated by many examples. Written with an eye toward number theory, it contains numerous applications to number theory (including proofs of Fermat's theorem on sums of two squares and of the Law of Quadratic Reciprocity) and serves as an excellent basis for further study in algebra in general and number theory in particular.Each of its chapters concludes with a variety of exercises ranging from the straightforward to the challenging in order to reinforce students' knowledge of the subject. Some of these are particular examples that illustrate the theory while others are general results that develop the theory further.
Author | : Shahriar Shahriari |
Publisher | : |
Total Pages | : 675 |
Release | : 2017 |
Genre | : Algebra |
ISBN | : 9781470436612 |
This text—based on the author's popular courses at Pomona College—provides a readable, student-friendly, and somewhat sophisticated introduction to abstract algebra. It is aimed at sophomore or junior undergraduates who are seeing the material for the first time. In addition to the usual definitions and theorems, there is ample discussion to help students build intuition and learn how to think about the abstract concepts. The book has over 1300 exercises and mini-projects of varying degrees of difficulty, and, to facilitate active learning and self-study, hints and short answers for many of the problems are provided. There are full solutions to over 100 problems in order to augment the text and to model the writing of solutions. Lattice diagrams are used throughout to visually demonstrate results and proof techniques. The book covers groups, rings, and fields. In group theory, group actions are the unifying theme and are introduced early. Ring theory is motivated by what is needed for solving Diophantine equations, and, in field theory, Galois theory and the solvability of polynomials take center stage. In each area, the text goes deep enough to demonstrate the power of abstract thinking and to convince the reader that the subject is full of unexpected results.
Author | : Charles C Pinter |
Publisher | : Courier Corporation |
Total Pages | : 402 |
Release | : 2010-01-14 |
Genre | : Mathematics |
ISBN | : 0486474178 |
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
Author | : David A.R. Wallace |
Publisher | : Springer Science & Business Media |
Total Pages | : 256 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1447104250 |
This is a basic introduction to modern algebra, providing a solid understanding of the axiomatic treatment of groups and then rings, aiming to promote a feeling for the evolutionary and historical development of the subject. It includes problems and fully worked solutions, enabling readers to master the subject rather than simply observing it.
Author | : Thomas Judson |
Publisher | : Orthogonal Publishing L3c |
Total Pages | : 0 |
Release | : 2023-08-11 |
Genre | : |
ISBN | : 9781944325190 |
Abstract Algebra: Theory and Applications is an open-source textbook that is designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner. Its strengths include a wide range of exercises, both computational and theoretical, plus many non-trivial applications. The first half of the book presents group theory, through the Sylow theorems, with enough material for a semester-long course. The second half is suitable for a second semester and presents rings, integral domains, Boolean algebras, vector spaces, and fields, concluding with Galois Theory.