Rings, Fields and Groups

Rings, Fields and Groups
Author: R. B. J. T. Allenby
Publisher: Butterworth-Heinemann
Total Pages: 383
Release: 1991
Genre: Mathematics
ISBN: 9780340544402

Provides an introduction to the results, methods and ideas which are now commonly studied in abstract algebra courses

Rings, Fields and Groups

Rings, Fields and Groups
Author: R. B. J. T. Allenby
Publisher: Hodder Education
Total Pages: 422
Release: 1983
Genre: Mathematics
ISBN:

This book provides a stimulating and unusiual introduction to the results, methods and ideas which are now commonly studied in abstract algebra courses in universities and polytechnics. The mixture of informal and formal presentation generates the enthusiasm of the reader without neglecting the axiomatic approach necessary for the serious study.

Introduction to Abstract Algebra

Introduction to Abstract Algebra
Author: Benjamin Fine
Publisher: JHU Press
Total Pages: 583
Release: 2014-07-01
Genre: Mathematics
ISBN: 1421411776

A new approach to abstract algebra that eases student anxieties by building on fundamentals. Introduction to Abstract Algebra presents a breakthrough approach to teaching one of math's most intimidating concepts. Avoiding the pitfalls common in the standard textbooks, Benjamin Fine, Anthony M. Gaglione, and Gerhard Rosenberger set a pace that allows beginner-level students to follow the progression from familiar topics such as rings, numbers, and groups to more difficult concepts. Classroom tested and revised until students achieved consistent, positive results, this textbook is designed to keep students focused as they learn complex topics. Fine, Gaglione, and Rosenberger's clear explanations prevent students from getting lost as they move deeper and deeper into areas such as abelian groups, fields, and Galois theory. This textbook will help bring about the day when abstract algebra no longer creates intense anxiety but instead challenges students to fully grasp the meaning and power of the approach. Topics covered include: • Rings • Integral domains • The fundamental theorem of arithmetic • Fields • Groups • Lagrange's theorem • Isomorphism theorems for groups • Fundamental theorem of finite abelian groups • The simplicity of An for n5 • Sylow theorems • The Jordan-Hölder theorem • Ring isomorphism theorems • Euclidean domains • Principal ideal domains • The fundamental theorem of algebra • Vector spaces • Algebras • Field extensions: algebraic and transcendental • The fundamental theorem of Galois theory • The insolvability of the quintic

Rings, Fields, and Vector Spaces

Rings, Fields, and Vector Spaces
Author: Bharath Sethuraman
Publisher: Springer Science & Business Media
Total Pages: 210
Release: 1996-11-26
Genre: Mathematics
ISBN: 0387948481

Using the proof of the non-trisectability of an arbitrary angle as a final goal, the author develops in an easy conversational style the basics of rings, fields, and vector spaces. Originally developed as a text for an introduction to algebra course for future high-school teachers at California State University, Northridge, the focus of this book is on exposition. It would serve extremely well as a focused, one-semester introduction to abstract algebra.

Introduction To Abstract Algebra, An: Sets, Groups, Rings, And Fields

Introduction To Abstract Algebra, An: Sets, Groups, Rings, And Fields
Author: Steven Howard Weintraub
Publisher: World Scientific
Total Pages: 438
Release: 2022-05-25
Genre: Mathematics
ISBN: 9811246688

This book is a textbook for a semester-long or year-long introductory course in abstract algebra at the upper undergraduate or beginning graduate level.It treats set theory, group theory, ring and ideal theory, and field theory (including Galois theory), and culminates with a treatment of Dedekind rings, including rings of algebraic integers.In addition to treating standard topics, it contains material not often dealt with in books at this level. It provides a fresh perspective on the subjects it covers, with, in particular, distinctive treatments of factorization theory in integral domains and of Galois theory.As an introduction, it presupposes no prior knowledge of abstract algebra, but provides a well-motivated, clear, and rigorous treatment of the subject, illustrated by many examples. Written with an eye toward number theory, it contains numerous applications to number theory (including proofs of Fermat's theorem on sums of two squares and of the Law of Quadratic Reciprocity) and serves as an excellent basis for further study in algebra in general and number theory in particular.Each of its chapters concludes with a variety of exercises ranging from the straightforward to the challenging in order to reinforce students' knowledge of the subject. Some of these are particular examples that illustrate the theory while others are general results that develop the theory further.

Algebra in Action

Algebra in Action
Author: Shahriar Shahriari
Publisher:
Total Pages: 675
Release: 2017
Genre: Algebra
ISBN: 9781470436612

This text—based on the author's popular courses at Pomona College—provides a readable, student-friendly, and somewhat sophisticated introduction to abstract algebra. It is aimed at sophomore or junior undergraduates who are seeing the material for the first time. In addition to the usual definitions and theorems, there is ample discussion to help students build intuition and learn how to think about the abstract concepts. The book has over 1300 exercises and mini-projects of varying degrees of difficulty, and, to facilitate active learning and self-study, hints and short answers for many of the problems are provided. There are full solutions to over 100 problems in order to augment the text and to model the writing of solutions. Lattice diagrams are used throughout to visually demonstrate results and proof techniques. The book covers groups, rings, and fields. In group theory, group actions are the unifying theme and are introduced early. Ring theory is motivated by what is needed for solving Diophantine equations, and, in field theory, Galois theory and the solvability of polynomials take center stage. In each area, the text goes deep enough to demonstrate the power of abstract thinking and to convince the reader that the subject is full of unexpected results.

A Book of Abstract Algebra

A Book of Abstract Algebra
Author: Charles C Pinter
Publisher: Courier Corporation
Total Pages: 402
Release: 2010-01-14
Genre: Mathematics
ISBN: 0486474178

Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.

Groups, Rings and Fields

Groups, Rings and Fields
Author: David A.R. Wallace
Publisher: Springer Science & Business Media
Total Pages: 256
Release: 2012-12-06
Genre: Mathematics
ISBN: 1447104250

This is a basic introduction to modern algebra, providing a solid understanding of the axiomatic treatment of groups and then rings, aiming to promote a feeling for the evolutionary and historical development of the subject. It includes problems and fully worked solutions, enabling readers to master the subject rather than simply observing it.

Abstract Algebra

Abstract Algebra
Author: Thomas Judson
Publisher: Orthogonal Publishing L3c
Total Pages: 0
Release: 2023-08-11
Genre:
ISBN: 9781944325190

Abstract Algebra: Theory and Applications is an open-source textbook that is designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner. Its strengths include a wide range of exercises, both computational and theoretical, plus many non-trivial applications. The first half of the book presents group theory, through the Sylow theorems, with enough material for a semester-long course. The second half is suitable for a second semester and presents rings, integral domains, Boolean algebras, vector spaces, and fields, concluding with Galois Theory.