Intersection Cohomology Simplicial Blow Up And Rational Homotopy
Download Intersection Cohomology Simplicial Blow Up And Rational Homotopy full books in PDF, epub, and Kindle. Read online free Intersection Cohomology Simplicial Blow Up And Rational Homotopy ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : David Chataur |
Publisher | : American Mathematical Soc. |
Total Pages | : 122 |
Release | : 2018-08-09 |
Genre | : Mathematics |
ISBN | : 1470428873 |
Let X be a pseudomanifold. In this text, the authors use a simplicial blow-up to define a cochain complex whose cohomology with coefficients in a field, is isomorphic to the intersection cohomology of X, introduced by M. Goresky and R. MacPherson. The authors do it simplicially in the setting of a filtered version of face sets, also called simplicial sets without degeneracies, in the sense of C. P. Rourke and B. J. Sanderson. They define perverse local systems over filtered face sets and intersection cohomology with coefficients in a perverse local system. In particular, as announced above when X is a pseudomanifold, the authors get a perverse local system of cochains quasi-isomorphic to the intersection cochains of Goresky and MacPherson, over a field. We show also that these two complexes of cochains are quasi-isomorphic to a filtered version of Sullivan's differential forms over the field Q. In a second step, they use these forms to extend Sullivan's presentation of rational homotopy type to intersection cohomology.
Author | : Greg Friedman |
Publisher | : Cambridge University Press |
Total Pages | : 824 |
Release | : 2020-09-24 |
Genre | : Mathematics |
ISBN | : 1108895360 |
Intersection homology is a version of homology theory that extends Poincaré duality and its applications to stratified spaces, such as singular varieties. This is the first comprehensive expository book-length introduction to intersection homology from the viewpoint of singular and piecewise-linear chains. Recent breakthroughs have made this approach viable by providing intersection homology and cohomology versions of all the standard tools in the homology tool box, making the subject readily accessible to graduate students and researchers in topology as well as researchers from other fields. This text includes both new research material and new proofs of previously-known results in intersection homology, as well as treatments of many classical topics in algebraic and manifold topology. Written in a detailed but expository style, this book is suitable as an introduction to intersection homology or as a thorough reference.
Author | : José Luis Cisneros-Molina |
Publisher | : Springer Nature |
Total Pages | : 581 |
Release | : 2021-11-01 |
Genre | : Mathematics |
ISBN | : 3030780244 |
This is the second volume of the Handbook of the Geometry and Topology of Singularities, a series which aims to provide an accessible account of the state-of-the-art of the subject, its frontiers, and its interactions with other areas of research. This volume consists of ten chapters which provide an in-depth and reader-friendly survey of some of the foundational aspects of singularity theory and related topics. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject, and in other subjects. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.
Author | : Jérôme Scherer |
Publisher | : American Mathematical Soc. |
Total Pages | : 322 |
Release | : 2018-05-30 |
Genre | : Mathematics |
ISBN | : 147042911X |
This volume contains the proceedings of the Alpine Algebraic and Applied Topology Conference, held from August 15–21, 2016, in Saas-Almagell, Switzerland. The papers cover a broad range of topics in modern algebraic topology, including the theory of highly structured ring spectra, infinity-categories and Segal spaces, equivariant homotopy theory, algebraic -theory and topological cyclic, periodic, or Hochschild homology, intersection cohomology, and symplectic topology.
Author | : Paata Ivanisvili |
Publisher | : American Mathematical Soc. |
Total Pages | : 148 |
Release | : 2018-10-03 |
Genre | : Mathematics |
ISBN | : 1470429543 |
In a previous study, the authors built the Bellman function for integral functionals on the space. The present paper provides a development of the subject. They abandon the majority of unwanted restrictions on the function that generates the functional. It is the new evolutional approach that allows the authors to treat the problem in its natural setting. What is more, these new considerations lighten dynamical aspects of the Bellman function, in particular, the evolution of its picture.
Author | : Maurice Duits |
Publisher | : American Mathematical Soc. |
Total Pages | : 130 |
Release | : 2018-10-03 |
Genre | : Mathematics |
ISBN | : 1470429640 |
In this paper the authors study mesoscopic fluctuations for Dyson's Brownian motion with β=2 . Dyson showed that the Gaussian Unitary Ensemble (GUE) is the invariant measure for this stochastic evolution and conjectured that, when starting from a generic configuration of initial points, the time that is needed for the GUE statistics to become dominant depends on the scale we look at: The microscopic correlations arrive at the equilibrium regime sooner than the macrosopic correlations. The authors investigate the transition on the intermediate, i.e. mesoscopic, scales. The time scales that they consider are such that the system is already in microscopic equilibrium (sine-universality for the local correlations), but have not yet reached equilibrium at the macrosopic scale. The authors describe the transition to equilibrium on all mesoscopic scales by means of Central Limit Theorems for linear statistics with sufficiently smooth test functions. They consider two situations: deterministic initial points and randomly chosen initial points. In the random situation, they obtain a transition from the classical Central Limit Theorem for independent random variables to the one for the GUE.
Author | : T. Alazard |
Publisher | : American Mathematical Soc. |
Total Pages | : 120 |
Release | : 2019-01-08 |
Genre | : Mathematics |
ISBN | : 147043203X |
This memoir is devoted to the proof of a well-posedness result for the gravity water waves equations, in arbitrary dimension and in fluid domains with general bottoms, when the initial velocity field is not necessarily Lipschitz. Moreover, for two-dimensional waves, the authors consider solutions such that the curvature of the initial free surface does not belong to L2. The proof is entirely based on the Eulerian formulation of the water waves equations, using microlocal analysis to obtain sharp Sobolev and Hölder estimates. The authors first prove tame estimates in Sobolev spaces depending linearly on Hölder norms and then use the dispersive properties of the water-waves system, namely Strichartz estimates, to control these Hölder norms.
Author | : Sergey Fomin |
Publisher | : American Mathematical Soc. |
Total Pages | : 110 |
Release | : 2018-10-03 |
Genre | : Mathematics |
ISBN | : 1470429675 |
For any cluster algebra whose underlying combinatorial data can be encoded by a bordered surface with marked points, the authors construct a geometric realization in terms of suitable decorated Teichmüller space of the surface. On the geometric side, this requires opening the surface at each interior marked point into an additional geodesic boundary component. On the algebraic side, it relies on the notion of a non-normalized cluster algebra and the machinery of tropical lambda lengths. The authors' model allows for an arbitrary choice of coefficients which translates into a choice of a family of integral laminations on the surface. It provides an intrinsic interpretation of cluster variables as renormalized lambda lengths of arcs on the surface. Exchange relations are written in terms of the shear coordinates of the laminations and are interpreted as generalized Ptolemy relations for lambda lengths. This approach gives alternative proofs for the main structural results from the authors' previous paper, removing unnecessary assumptions on the surface.
Author | : Werner Hoffmann |
Publisher | : American Mathematical Soc. |
Total Pages | : 100 |
Release | : 2018-10-03 |
Genre | : Mathematics |
ISBN | : 1470431025 |
The authors study the non-semisimple terms in the geometric side of the Arthur trace formula for the split symplectic similitude group and the split symplectic group of rank over any algebraic number field. In particular, they express the global coefficients of unipotent orbital integrals in terms of Dedekind zeta functions, Hecke -functions, and the Shintani zeta function for the space of binary quadratic forms.
Author | : Alexandru D. Ionescu |
Publisher | : American Mathematical Soc. |
Total Pages | : 136 |
Release | : 2019-01-08 |
Genre | : Mathematics |
ISBN | : 1470431033 |
The authors consider the full irrotational water waves system with surface tension and no gravity in dimension two (the capillary waves system), and prove global regularity and modified scattering for suitably small and localized perturbations of a flat interface. An important point of the authors' analysis is to develop a sufficiently robust method (the “quasilinear I-method”) which allows the authors to deal with strong singularities arising from time resonances in the applications of the normal form method (the so-called “division problem”). As a result, they are able to consider a suitable class of perturbations with finite energy, but no other momentum conditions. Part of the authors' analysis relies on a new treatment of the Dirichlet-Neumann operator in dimension two which is of independent interest. As a consequence, the results in this paper are self-contained.