Lie Groups, Geometric Structures and Differential Equations

Lie Groups, Geometric Structures and Differential Equations
Author: Tohru Morimoto
Publisher:
Total Pages: 514
Release: 2002
Genre: Mathematics
ISBN:

The blending of algebra, geometry, and differential equations has a long and distinguished history, dating back to the work of Sophus Lie and Elie Cartan. Overviewing the depth of their influence over the past 100 years presents a formidable challenge. A conference was held on the centennial of Lie's death to reflect upon and celebrate his pursuits, later developments, and what the future may hold. This volume showcases the contents, atmosphere, and results of that conference. Ofparticular importance are two survey articles: Morimoto develops a synthetic study of Lie groups, geometric structures, and differential equations from a unified viewpoint of nilpotent geometry. Yamaguchi and Yatsui discuss the geometry of higher order differential equations of finite type. Contributedresearch articles cover a wide range of disciplines, from geometry of differential equations, CR-geometry, and differential geometry to topics in mathematical physics. This volume is intended for graduate students studying differential geometry and analyis and advanced graduate students and researchers interested in an overview of the most recent progress in these fields. Information for our distributors: Published for the Mathematical Society of Japan by Kinokuniya, Tokyo, and distributedworldwide, except in Japan, by the AMS. All commercial channel discounts apply.

Lie Groups, Differential Equations, and Geometry

Lie Groups, Differential Equations, and Geometry
Author: Giovanni Falcone
Publisher: Springer
Total Pages: 368
Release: 2017-09-19
Genre: Mathematics
ISBN: 3319621815

This book collects a series of contributions addressing the various contexts in which the theory of Lie groups is applied. A preliminary chapter serves the reader both as a basic reference source and as an ongoing thread that runs through the subsequent chapters. From representation theory and Gerstenhaber algebras to control theory, from differential equations to Finsler geometry and Lepage manifolds, the book introduces young researchers in Mathematics to a wealth of different topics, encouraging a multidisciplinary approach to research. As such, it is suitable for students in doctoral courses, and will also benefit researchers who want to expand their field of interest.

Proceedings of the International Conference on Complex Geometry and Related Fields

Proceedings of the International Conference on Complex Geometry and Related Fields
Author: Zhijie Chen
Publisher: American Mathematical Soc.
Total Pages: 414
Release: 2007
Genre: Mathematics
ISBN: 0821839497

In commemoration and celebration of the tenth anniversary of the Institute of Mathematics at East China Normal University, an International Conference on complex geometry and related fields recently convened. This collection presents some of the conference highlights, dealing with various and significant topics of differential and algebraic geometry, while exploring their connections to number theory and mathematical physics. Information for our distributors: Titles in this series are co-published with International Press, Cambridge, MA.

A Guide To Lie Systems With Compatible Geometric Structures

A Guide To Lie Systems With Compatible Geometric Structures
Author: Javier De Lucas Araujo
Publisher: World Scientific
Total Pages: 425
Release: 2020-01-22
Genre: Mathematics
ISBN: 1786346990

The book presents a comprehensive guide to the study of Lie systems from the fundamentals of differential geometry to the development of contemporary research topics. It embraces several basic topics on differential geometry and the study of geometric structures while developing known applications in the theory of Lie systems. The book also includes a brief exploration of the applications of Lie systems to superequations, discrete systems, and partial differential equations.Offering a complete overview from the topic's foundations to the present, this book is an ideal resource for Physics and Mathematics students, doctoral students and researchers.

Differential Geometry And Its Applications - Proceedings Of The 10th International Conference On Dga2007

Differential Geometry And Its Applications - Proceedings Of The 10th International Conference On Dga2007
Author: Demeter Krupka
Publisher: World Scientific
Total Pages: 732
Release: 2008-07-14
Genre: Mathematics
ISBN: 9814471941

This volume contains invited lectures and selected research papers in the fields of classical and modern differential geometry, global analysis, and geometric methods in physics, presented at the 10th International Conference on Differential Geometry and its Applications (DGA2007), held in Olomouc, Czech Republic.The book covers recent developments and the latest results in the following fields: Riemannian geometry, connections, jets, differential invariants, the calculus of variations on manifolds, differential equations, Finsler structures, and geometric methods in physics. It is also a celebration of the 300th anniversary of the birth of one of the greatest mathematicians, Leonhard Euler, and includes the Euler lecture “Leonhard Euler — 300 years on” by R Wilson. Notable contributors include J F Cariñena, M Castrillón López, J Erichhorn, J-H Eschenburg, I Kolář, A P Kopylov, J Korbaš, O Kowalski, B Kruglikov, D Krupka, O Krupková, R Léandre, Haizhong Li, S Maeda, M A Malakhaltsev, O I Mokhov, J Muñoz Masqué, S Preston, V Rovenski, D J Saunders, M Sekizawa, J Slovák, J Szilasi, L Tamássy, P Walczak, and others.

Lie Algebras, Vertex Operator Algebras and Their Applications

Lie Algebras, Vertex Operator Algebras and Their Applications
Author: Yi-Zhi Huang
Publisher: American Mathematical Soc.
Total Pages: 500
Release: 2007
Genre: Mathematics
ISBN: 0821839861

The articles in this book are based on talks given at the international conference 'Lie algebras, vertex operator algebras and their applications'. The focus of the papers is mainly on Lie algebras, quantum groups, vertex operator algebras and their applications to number theory, combinatorics and conformal field theory.