Intelligent Hybrid Systems
Download Intelligent Hybrid Systems full books in PDF, epub, and Kindle. Read online free Intelligent Hybrid Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Suran Goonatilake |
Publisher | : |
Total Pages | : 352 |
Release | : 1995 |
Genre | : Computers |
ISBN | : |
This book provides a definition of hybrid systems, summarizes the current state of the art, and presents contributions that detail innovative methods for integrating different intelligent techniques. The book is intended to equip researchers, applications developers, and managers with key reference and resource material for the successful development of hybrid systems.
Author | : Oscar Castillo |
Publisher | : Springer Nature |
Total Pages | : 354 |
Release | : 2019-11-23 |
Genre | : Technology & Engineering |
ISBN | : 3030341356 |
This book describes the latest advances in fuzzy logic, neural networks and optimization algorithms, as well as their hybrid combinations, and their applications in areas such as: intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction, and optimization of complex problems. The book is divided into five main parts. The first part proposes new concepts and algorithms based on type-1 and type-2 fuzzy logic and their applications; the second explores new concepts and algorithms in neural networks and fuzzy logic applied to recognition. The third part examines the theory and practice of meta-heuristics in various areas of application, while the fourth highlights diverse applications of fuzzy logic, neural networks and hybrid intelligent systems in medical contexts. Finally, the fifth part focuses on applications of fuzzy logic, neural networks and meta-heuristics to robotics problems.
Author | : Zili Zhang (Ph.D.) |
Publisher | : Springer Science & Business Media |
Total Pages | : 200 |
Release | : 2004-01-28 |
Genre | : Computers |
ISBN | : 3540209085 |
Solving complex problems in real-world contexts, such as financial investment planning or mining large data collections, involves many different sub-tasks, each of which requires different techniques. To deal with such problems, a great diversity of intelligent techniques are available, including traditional techniques like expert systems approaches and soft computing techniques like fuzzy logic, neural networks, or genetic algorithms. These techniques are complementary approaches to intelligent information processing rather than competing ones, and thus better results in problem solving are achieved when these techniques are combined in hybrid intelligent systems. Multi-Agent Systems are ideally suited to model the manifold interactions among the many different components of hybrid intelligent systems. This book introduces agent-based hybrid intelligent systems and presents a framework and methodology allowing for the development of such systems for real-world applications. The authors focus on applications in financial investment planning and data mining.
Author | : Abraham Kandel |
Publisher | : CRC Press |
Total Pages | : 450 |
Release | : 1992-02-21 |
Genre | : Computers |
ISBN | : 9780849342295 |
Hybrid architecture for intelligent systems is a new field of artificial intelligence concerned with the development of the next generation of intelligent systems. This volume is the first book to delineate current research interests in hybrid architectures for intelligent systems. The book is divided into two parts. The first part is devoted to the theory, methodologies, and algorithms of intelligent hybrid systems. The second part examines current applications of intelligent hybrid systems in areas such as data analysis, pattern classification and recognition, intelligent robot control, medical diagnosis, architecture, wastewater treatment, and flexible manufacturing systems. Hybrid Architectures for Intelligent Systems is an important reference for computer scientists and electrical engineers involved with artificial intelligence, neural networks, parallel processing, robotics, and systems architecture.
Author | : Ajith Abraham |
Publisher | : Springer Nature |
Total Pages | : 817 |
Release | : 2021-04-16 |
Genre | : Technology & Engineering |
ISBN | : 3030730506 |
This book highlights the recent research on hybrid intelligent systems and their various practical applications. It presents 58 selected papers from the 20th International Conference on Hybrid Intelligent Systems (HIS 2020) and 20 papers from the 12th World Congress on Nature and Biologically Inspired Computing (NaBIC 2020), which was held online, from December 14 to 16, 2020. A premier conference in the field of artificial intelligence, HIS - NaBIC 2020 brought together researchers, engineers and practitioners whose work involves intelligent systems, network security and their applications in industry. Including contributions by authors from 25 countries, the book offers a valuable reference guide for all researchers, students and practitioners in the fields of science and engineering.
Author | : Siddhartha Bhattacharyya |
Publisher | : Academic Press |
Total Pages | : 251 |
Release | : 2020-03-05 |
Genre | : Computers |
ISBN | : 012818700X |
Hybrid Computational Intelligence: Challenges and Utilities is a comprehensive resource that begins with the basics and main components of computational intelligence. It brings together many different aspects of the current research on HCI technologies, such as neural networks, support vector machines, fuzzy logic and evolutionary computation, while also covering a wide range of applications and implementation issues, from pattern recognition and system modeling, to intelligent control problems and biomedical applications. The book also explores the most widely used applications of hybrid computation as well as the history of their development. Each individual methodology provides hybrid systems with complementary reasoning and searching methods which allow the use of domain knowledge and empirical data to solve complex problems. - Provides insights into the latest research trends in hybrid intelligent algorithms and architectures - Focuses on the application of hybrid intelligent techniques for pattern mining and recognition, in big data analytics, and in human-computer interaction - Features hybrid intelligent applications in biomedical engineering and healthcare informatics
Author | : Da Ruan |
Publisher | : Springer Science & Business Media |
Total Pages | : 386 |
Release | : 1997-09-30 |
Genre | : Computers |
ISBN | : 9780792399995 |
Intelligent Hybrid Systems: Fuzzy Logic, Neural Networks, and Genetic Algorithms is an organized edited collection of contributed chapters covering basic principles, methodologies, and applications of fuzzy systems, neural networks and genetic algorithms. All chapters are original contributions by leading researchers written exclusively for this volume. This book reviews important concepts and models, and focuses on specific methodologies common to fuzzy systems, neural networks and evolutionary computation. The emphasis is on development of cooperative models of hybrid systems. Included are applications related to intelligent data analysis, process analysis, intelligent adaptive information systems, systems identification, nonlinear systems, power and water system design, and many others. Intelligent Hybrid Systems: Fuzzy Logic, Neural Networks, and Genetic Algorithms provides researchers and engineers with up-to-date coverage of new results, methodologies and applications for building intelligent systems capable of solving large-scale problems.
Author | : Enrique Onieva |
Publisher | : Springer |
Total Pages | : 750 |
Release | : 2015-05-29 |
Genre | : Computers |
ISBN | : 3319196448 |
This volume constitutes the proceedings of the 10th International Conference on Hybrid Artificial Intelligent Systems, HAIS 2015, held Bilbao, Spain, June 2014. The 60 papers published in this volume were carefully reviewed and selected from 190 submissions. They are organized in topical sections such as data mining and knowledge discovery; video and image analysis; bio-inspired models and evolutionary computation; learning algorithms; hybrid intelligent systems for data mining and applications; classification and cluster analysis, HAIS applications.
Author | : Michael Zgurovsky |
Publisher | : Springer Nature |
Total Pages | : 527 |
Release | : 2020-09-03 |
Genre | : Technology & Engineering |
ISBN | : 303048453X |
This book is intended for specialists as well as students and graduate students in the field of artificial intelligence, robotics and information technology. It is will also appeal to a wide range of readers interested in expanding the functionality of artificial intelligence systems. One of the pressing problems of modern artificial intelligence systems is the development of integrated hybrid systems based on deep learning. Unfortunately, there is currently no universal methodology for developing topologies of hybrid neural networks (HNN) using deep learning. The development of such systems calls for the expansion of the use of neural networks (NS) for solving recognition, classification and optimization problems. As such, it is necessary to create a unified methodology for constructing HNN with a selection of models of artificial neurons that make up HNN, gradually increasing the complexity of their structure using hybrid learning algorithms.
Author | : Crina Grosan |
Publisher | : Springer Science & Business Media |
Total Pages | : 456 |
Release | : 2011-07-29 |
Genre | : Technology & Engineering |
ISBN | : 364221004X |
Computational intelligence is a well-established paradigm, where new theories with a sound biological understanding have been evolving. The current experimental systems have many of the characteristics of biological computers (brains in other words) and are beginning to be built to perform a variety of tasks that are difficult or impossible to do with conventional computers. As evident, the ultimate achievement in this field would be to mimic or exceed human cognitive capabilities including reasoning, recognition, creativity, emotions, understanding, learning and so on. This book comprising of 17 chapters offers a step-by-step introduction (in a chronological order) to the various modern computational intelligence tools used in practical problem solving. Staring with different search techniques including informed and uninformed search, heuristic search, minmax, alpha-beta pruning methods, evolutionary algorithms and swarm intelligent techniques; the authors illustrate the design of knowledge-based systems and advanced expert systems, which incorporate uncertainty and fuzziness. Machine learning algorithms including decision trees and artificial neural networks are presented and finally the fundamentals of hybrid intelligent systems are also depicted. Academics, scientists as well as engineers engaged in research, development and application of computational intelligence techniques, machine learning and data mining would find the comprehensive coverage of this book invaluable.