Integral Transforms And Their Applications Third Edition
Download Integral Transforms And Their Applications Third Edition full books in PDF, epub, and Kindle. Read online free Integral Transforms And Their Applications Third Edition ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : B. Davies |
Publisher | : Springer Science & Business Media |
Total Pages | : 427 |
Release | : 2013-11-27 |
Genre | : Mathematics |
ISBN | : 1475755120 |
This book is intended to serve as introductory and reference material for the application of integral transforms to a range of common mathematical problems. It has its im mediate origin in lecture notes prepared for senior level courses at the Australian National University, although I owe a great deal to my colleague Barry Ninham, a matter to which I refer below. In preparing the notes for publication as a book, I have added a considerable amount of material ad- tional to the lecture notes, with the intention of making the book more useful, particularly to the graduate student - volved in the solution of mathematical problems in the physi cal, chemical, engineering and related sciences. Any book is necessarily a statement of the author's viewpoint, and involves a number of compromises. My prime consideration has been to produce a work whose scope is selective rather than encyclopedic; consequently there are many facets of the subject which have been omitted--in not a few cases after a preliminary draft was written--because I v believe that their inclusion would make the book too long.
Author | : Lokenath Debnath |
Publisher | : CRC Press |
Total Pages | : 820 |
Release | : 2014-11-07 |
Genre | : Mathematics |
ISBN | : 1482223570 |
Integral Transforms and Their Applications, Third Edition covers advanced mathematical methods for many applications in science and engineering. The book is suitable as a textbook for senior undergraduate and first-year graduate students and as a reference for professionals in mathematics, engineering, and applied sciences. It presents a systematic development of the underlying theory as well as a modern approach to Fourier, Laplace, Hankel, Mellin, Radon, Gabor, wavelet, and Z transforms and their applications. New to the Third Edition New material on the historical development of classical and modern integral transforms New sections on Fourier transforms of generalized functions, the Poisson summation formula, the Gibbs phenomenon, and the Heisenberg uncertainty principle Revised material on Laplace transforms and double Laplace transforms and their applications New examples of applications in mechanical vibrations, electrical networks, quantum mechanics, integral and functional equations, fluid mechanics, mathematical statistics, special functions, and more New figures that facilitate a clear understanding of physical explanations Updated exercises with solutions, tables of integral transforms, and bibliography Through numerous examples and end-of-chapter exercises, this book develops readers’ analytical and computational skills in the theory and applications of transform methods. It provides accessible working knowledge of the analytical methods and proofs required in pure and applied mathematics, physics, and engineering, preparing readers for subsequent advanced courses and research in these areas.
Author | : Brian Davies |
Publisher | : Springer Science & Business Media |
Total Pages | : 380 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1468492837 |
This is a substantially updated, extended and reorganized third edition of an introductory text on the use of integral transforms. Chapter I is largely new, covering introductory aspects of complex variable theory. Emphasis is on the development of techniques and the connection between properties of transforms and the kind of problems for which they provide tools. Around 400 problems are accompanied in the text. It will be useful for graduate students and researchers working in mathematics and physics.
Author | : Abdul Jerri |
Publisher | : CRC Press |
Total Pages | : 848 |
Release | : 2021-11-19 |
Genre | : Mathematics |
ISBN | : 1000104311 |
This reference/text desribes the basic elements of the integral, finite, and discrete transforms - emphasizing their use for solving boundary and initial value problems as well as facilitating the representations of signals and systems.;Proceeding to the final solution in the same setting of Fourier analysis without interruption, Integral and Discrete Transforms with Applications and Error Analysis: presents the background of the FFT and explains how to choose the appropriate transform for solving a boundary value problem; discusses modelling of the basic partial differential equations, as well as the solutions in terms of the main special functions; considers the Laplace, Fourier, and Hankel transforms and their variations, offering a more logical continuation of the operational method; covers integral, discrete, and finite transforms and trigonometric Fourier and general orthogonal series expansion, providing an application to signal analysis and boundary-value problems; and examines the practical approximation of computing the resulting Fourier series or integral representation of the final solution and treats the errors incurred.;Containing many detailed examples and numerous end-of-chapter exercises of varying difficulty for each section with answers, Integral and Discrete Transforms with Applications and Error Analysis is a thorough reference for analysts; industrial and applied mathematicians; electrical, electronics, and other engineers; and physicists and an informative text for upper-level undergraduate and graduate students in these disciplines.
Author | : Brian Davies |
Publisher | : Springer Science & Business Media |
Total Pages | : 398 |
Release | : 2002-01-02 |
Genre | : Mathematics |
ISBN | : 9780387953144 |
This is a substantially updated, extended and reorganized third edition of an introductory text on the use of integral transforms. Chapter I is largely new, covering introductory aspects of complex variable theory. Emphasis is on the development of techniques and the connection between properties of transforms and the kind of problems for which they provide tools. Around 400 problems are accompanied in the text. It will be useful for graduate students and researchers working in mathematics and physics.
Author | : K. Wolf |
Publisher | : Springer Science & Business Media |
Total Pages | : 495 |
Release | : 2013-11-21 |
Genre | : Science |
ISBN | : 1475708726 |
Integral transforms are among the main mathematical methods for the solution of equations describing physical systems, because, quite generally, the coupling between the elements which constitute such a system-these can be the mass points in a finite spring lattice or the continuum of a diffusive or elastic medium-prevents a straightforward "single-particle" solution. By describing the same system in an appropriate reference frame, one can often bring about a mathematical uncoupling of the equations in such a way that the solution becomes that of noninteracting constituents. The "tilt" in the reference frame is a finite or integral transform, according to whether the system has a finite or infinite number of elements. The types of coupling which yield to the integral transform method include diffusive and elastic interactions in "classical" systems as well as the more common quantum-mechanical potentials. The purpose of this volume is to present an orderly exposition of the theory and some of the applications of the finite and integral transforms associated with the names of Fourier, Bessel, Laplace, Hankel, Gauss, Bargmann, and several others in the same vein. The volume is divided into four parts dealing, respectively, with finite, series, integral, and canonical transforms. They are intended to serve as independent units. The reader is assumed to have greater mathematical sophistication in the later parts, though.
Author | : Kazumi Watanabe |
Publisher | : Springer |
Total Pages | : 274 |
Release | : 2015-04-20 |
Genre | : Technology & Engineering |
ISBN | : 331917455X |
This book describes mathematical techniques for integral transforms in a detailed but concise manner. The techniques are subsequently applied to the standard partial differential equations, such as the Laplace equation, the wave equation and elasticity equations. Green’s functions for beams, plates and acoustic media are also shown, along with their mathematical derivations. The Cagniard-de Hoop method for double inversion is described in detail and 2D and 3D elastodynamic problems are treated in full. This new edition explains in detail how to introduce the branch cut for the multi-valued square root function. Further, an exact closed form Green’s function for torsional waves is presented, as well as an application technique of the complex integral, which includes the square root function and an application technique of the complex integral.
Author | : Ram Shankar Pathak |
Publisher | : Routledge |
Total Pages | : 432 |
Release | : 2017-07-05 |
Genre | : History |
ISBN | : 135156269X |
For those who have a background in advanced calculus, elementary topology and functional analysis - from applied mathematicians and engineers to physicists - researchers and graduate students alike - this work provides a comprehensive analysis of the many important integral transforms and renders particular attention to all of the technical aspects of the subject. The author presents the last two decades of research and includes important results from other works.
Author | : Allan Pinkus |
Publisher | : Cambridge University Press |
Total Pages | : 204 |
Release | : 1997-07-10 |
Genre | : Mathematics |
ISBN | : 9780521597715 |
Textbook covering the basics of Fourier series, Fourier transforms and Laplace transforms.
Author | : Renato Machado Cotta |
Publisher | : CRC Press |
Total Pages | : 351 |
Release | : 2020-12-18 |
Genre | : Technology & Engineering |
ISBN | : 1000099407 |
Integral Transforms in Computational Heat and Fluid Flow is a comprehensive volume that emphasizes the generalized integral transform technique (G.I.T.T.) and the developments that have made the technique a powerful computational tool of practical interest. The book progressively demonstrates the approach through increasingly difficult extensions and test problems. It begins with an overview of the generalized integral transform technique in contrast with classical analytical ideas. Various applications are presented throughout the book, including transient fin analysis with time-dependent surface dissipation, laminar forced convection inside externally finned tubes, metals oxidation at high temperatures, forced convection in liquid metals, and Navier-Stokes equations.