Integral Theorems For Functions And Differential Forms In Cm
Download Integral Theorems For Functions And Differential Forms In Cm full books in PDF, epub, and Kindle. Read online free Integral Theorems For Functions And Differential Forms In Cm ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Reynaldo Rocha-Chavez |
Publisher | : CRC Press |
Total Pages | : 217 |
Release | : 2001-08-03 |
Genre | : Mathematics |
ISBN | : 1420035517 |
The theory of holomorphic functions of several complex variables emerged from the attempt to generalize the theory in one variable to the multidimensional situation. Research in this area has led to the discovery of many sophisticated facts, structures, ideas, relations, and applications. This deepening of knowledge, however, has also revealed more
Author | : L a Aizenberg |
Publisher | : American Mathematical Soc. |
Total Pages | : 178 |
Release | : 2000-04-30 |
Genre | : Mathematics |
ISBN | : 082181348X |
The authors consider the problem of characterizing the exterior differential forms which are orthogonal to holomorphic functions (or forms) in a domain $D\subset {\mathbf C}^n$ with respect to integration over the boundary, and some related questions. They give a detailed account of the derivation of the Bochner-Martinelli-Koppelman integral representation of exterior differential forms, which was obtained in 1967 and has already found many important applications. They study the properties of $\overline \partial$-closed forms of type $(p, n - 1), 0\leq p\leq n - 1$, which turn out to be the duals (with respect to the orthogonality mentioned above) to holomorphic functions (or forms) in several complex variables, and resemble holomorphic functions of one complex variable in their properties.
Author | : Steven G. Krantz |
Publisher | : Springer Science & Business Media |
Total Pages | : 344 |
Release | : 2008-12-15 |
Genre | : Mathematics |
ISBN | : 0817646795 |
This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.
Author | : Rafal Ablamowicz |
Publisher | : Springer Science & Business Media |
Total Pages | : 635 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461220440 |
The invited papers in this volume provide a detailed examination of Clifford algebras and their significance to analysis, geometry, mathematical structures, physics, and applications in engineering. While the papers collected in this volume require that the reader possess a solid knowledge of appropriate background material, they lead to the most current research topics. With its wide range of topics, well-established contributors, and excellent references and index, this book will appeal to graduate students and researchers.
Author | : Irene Sabadini |
Publisher | : Springer Science & Business Media |
Total Pages | : 280 |
Release | : 2010-12-20 |
Genre | : Mathematics |
ISBN | : 3034602464 |
The purpose of the volume is to bring forward recent trends of research in hypercomplex analysis. The list of contributors includes first rate mathematicians and young researchers working on several different aspects in quaternionic and Clifford analysis. Besides original research papers, there are papers providing the state-of-the-art of a specific topic, sometimes containing interdisciplinary fields. The intended audience includes researchers, PhD students, postgraduate students who are interested in the field and in possible connection between hypercomplex analysis and other disciplines, including mathematical analysis, mathematical physics, algebra.
Author | : Lynn Harold Loomis |
Publisher | : World Scientific Publishing Company |
Total Pages | : 595 |
Release | : 2014-02-26 |
Genre | : Mathematics |
ISBN | : 9814583952 |
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Author | : Joseph A. Ball |
Publisher | : Springer Science & Business Media |
Total Pages | : 447 |
Release | : 2011-02-03 |
Genre | : Mathematics |
ISBN | : 3034601611 |
This is the second volume of a collection of original and review articles on recent advances and new directions in a multifaceted and interconnected area of mathematics and its applications. It encompasses many topics in theoretical developments in operator theory and its diverse applications in applied mathematics, physics, engineering, and other disciplines. The purpose is to bring in one volume many important original results of cutting edge research as well as authoritative review of recent achievements, challenges, and future directions in the area of operator theory and its applications.
Author | : James R. Munkres |
Publisher | : CRC Press |
Total Pages | : 296 |
Release | : 2018-02-19 |
Genre | : Mathematics |
ISBN | : 0429973772 |
A readable introduction to the subject of calculus on arbitrary surfaces or manifolds. Accessible to readers with knowledge of basic calculus and linear algebra. Sections include series of problems to reinforce concepts.
Author | : Irene Sabadini |
Publisher | : Springer Science & Business Media |
Total Pages | : 289 |
Release | : 2009-04-21 |
Genre | : Mathematics |
ISBN | : 3764398930 |
Contains selected papers from the ISAAC conference 2007 and invited contributions. This book covers various topics that represent the main streams of research in hypercomplex analysis as well as the expository articles. It is suitable for researchers and postgraduate students in various areas of mathematical analysis.
Author | : Theodor Bröcker |
Publisher | : Cambridge University Press |
Total Pages | : 176 |
Release | : 1982-09-16 |
Genre | : Mathematics |
ISBN | : 9780521284707 |
This book is intended as an elementary introduction to differential manifolds. The authors concentrate on the intuitive geometric aspects and explain not only the basic properties but also teach how to do the basic geometrical constructions. An integral part of the work are the many diagrams which illustrate the proofs. The text is liberally supplied with exercises and will be welcomed by students with some basic knowledge of analysis and topology.